Hydrogen addition effects in a confined swirl-stabilized methane-air flame

被引:96
|
作者
Kim, Han S. [1 ]
Arghode, Vaibhav K. [1 ]
Linck, Martin B. [1 ]
Gupta, Ashwani K. [1 ]
机构
[1] Univ Maryland, Dept Mech Engn, College Pk, MD 20742 USA
关键词
Hydrogen enrichment of methane flames; Confined pre-mixed combustion; Flame stability; NOx emission; Swirl; Diffusion flame; COMBUSTION;
D O I
10.1016/j.ijhydene.2008.10.034
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The effect of hydrogen addition in methane-air premixed flames has been examined from a swirl-stabilized combustor under confined conditions. The effect of hydrogen addition in ethane-air flame has been examined over a range of conditions using a laboratory-scale m premixed combustor operated at 5.81 kW. Different swirlers have been investigated to identify the role of swirl strength to the incoming mixture. The flame stability was examined for the effect of amount of hydrogen addition, combustion air flow rates and swirl strengths. This was carried out by comparing adiabatic flame temperatures at the lean flame limit. The combustion characteristics of hydrogen-enriched methane flames at constant heat load but different swirl strengths have been examined using particle image velocimetry (PIV), micro-thermocouples and OH chemiluminescence diagnostics that provided information on velocity, thermal field, and combustion generated OH species concentration in the flame, respectively. Gas analyzer was used to obtain NOx and CO concentration at the combustor exit. The results show that the lean stability limit is extended by hydrogen addition. The stability limit can reduce at higher swirl intensity to the fuel-air mixture operating at lower adiabatic flame temperatures. The addition of hydrogen increases the NOx emission; however, this effect can be reduced by increasing either the excess air or swirl intensity. The emissions of NOx and CO from the premixed flame were also compared with a diffusion flame type combustor. The NOx emissions of hydrogen-enriched methane premixed flame were found to be lower than the corresponding diffusion flame under same operating conditions for the fuel-lean case. (C) 2008 International Association for Hydrogen Energy. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:1054 / 1062
页数:9
相关论文
共 50 条
  • [31] Flame characteristics of methane/air with hydrogen addition in the micro confined combustion space
    Guo, Li
    Zhai, Ming
    Xu, Shijie
    Shen, Qianhao
    Dong, Peng
    Bai, Xue-Song
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2022, 47 (44) : 19319 - 19337
  • [32] Combustion of hydrogen-enriched methane in a lean premixed swirl-stabilized burner
    Schefer, RW
    Wicksall, DM
    Agrawal, AK
    [J]. PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2002, 29 : 843 - 851
  • [33] Hydrogen addition effects on methane-air colorless distributed combustion flames
    Arghode, Vaibhav K.
    Gupta, Ashwani K.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2011, 36 (10) : 6292 - 6302
  • [34] Emission Characteristics for Swirl Methane-Air Premixed Flames with Ammonia Addition
    Jojka, Joanna
    Slefarski, Rafal
    [J]. ENERGIES, 2021, 14 (03)
  • [35] The Function of Hydrogen Chloride on Methane-Air Premixed Flame
    Shin, Sung Su
    Lee, Ki Yong
    [J]. TRANSACTIONS OF THE KOREAN SOCIETY OF MECHANICAL ENGINEERS B, 2005, 29 (09) : 979 - 987
  • [36] Dynamical Characterization of Thermoacoustic Oscillations in a Hydrogen-Enriched Partially Premixed Swirl-Stabilized Methane/Air Combustor
    Kushwaha, Abhishek
    Kasthuri, Praveen
    Pawar, Samadhan A.
    Sujith, R., I
    Chterev, Ianko
    Boxx, Isaac
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2021, 143 (12):
  • [37] Effects of hydrogen and steam addition on laminar burning velocity of methane-air premixed flame: Experimental and numerical analysis
    Boushaki, T.
    Dhue, Y.
    Selle, L.
    Ferret, B.
    Poinsot, T.
    [J]. INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2012, 37 (11) : 9412 - 9422
  • [38] DYNAMICAL CHARACTERIZATION OF THERMOACOUSTIC OSCILLATIONS IN A HYDROGEN-ENRICHED PARTIALLY PREMIXED SWIRL-STABILIZED METHANE/AIR COMBUSTOR
    Kushwaha, Abhishek
    Kasthuri, Praveen
    Pawar, Samadhan A.
    Sujith, R. I.
    Chterev, Ianko
    Boxx, Isaac
    [J]. PROCEEDINGS OF ASME TURBO EXPO 2021: TURBOMACHINERY TECHNICAL CONFERENCE AND EXPOSITION, VOL 3B, 2021,
  • [39] Effects of hydrogen and helium addition to fuel on soot formation in axisymmetric coflow laminar methane-air diffusion flame
    Liu, Fengshan
    Migliorini, Francesca
    Cignoli, Francesco
    De Luliis, Silvana
    Zizak, Giorgio
    [J]. PROCEEDINGS OF THE ASME/JSME THERMAL ENGINEERING SUMMER HEAT TRANSFER CONFERENCE 2007, VOL 3, 2007, : 633 - 642
  • [40] AN EXPERIMENTAL AND COMPUTATIONAL STUDY OF A SWIRL-STABILIZED PREMIXED FLAME
    De, Ashoke
    Zhu, Shengrong
    Acharya, Sumanta
    [J]. PROCEEDINGS OF THE ASME TURBO EXPO 2009, VOL 2, 2009, : 951 - 968