Electro-osmotic flow in disordered porous and fractured media

被引:11
|
作者
Hamzehpour, Hossein [1 ]
Atakhani, Asal [1 ]
Gupta, Alok Kumar [2 ]
Sahimi, Muhammad [3 ]
机构
[1] KN Toosi Univ Technol, Dept Phys, Tehran 158754416, Iran
[2] Uni Res AS, Dept Uni Comp, N-5008 Bergen, Norway
[3] Univ So Calif, Mork Family Dept Chem Engn & Mat Sci, Los Angeles, CA 90089 USA
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 03期
关键词
POISSON-BOLTZMANN SIMULATIONS; ELECTROKINETIC REMEDIATION; ASPHALT FLOCCULATION; STICKS SYSTEM; MICROCHANNELS; TRANSPORT; DEFORMATION; DEPOSITION; COMPUTER; PARTICLE;
D O I
10.1103/PhysRevE.89.033007
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Electro-osmosis phenomena are studied in a two-dimensional (2D) model disordered porous medium. The flow passages are represented by a network of spatially distributed rectangular channels with random orientations. The channels may represent microfractures in fractured porous media or in a network of interconnected microfractures, pores in a porous medium, or fibers in a fibrous porous material. The linearized equations of electrokinetics are solved numerically in a single channel, and in the 2D network of the channels. The macroscopic electrical conductivity sigma and electro-osmotic coupling coefficient beta are computed as functions of the electrical surface potential zeta and such geometrical parameters of the network as the channels' number density and widths, as well as the porosity of the medium. Despite the complexity of the phenomena and the model of porous media that is used, both sigma and beta appear to depend on the characteristics of the phenomena and porous media through very simple relations.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Dissimilar electro-osmotic flow and ionic current recirculation patterns in porous media detected by NMR mapping experiments
    Buhai, B
    Kimmich, R
    PHYSICAL REVIEW LETTERS, 2006, 96 (17)
  • [22] LBM Simulation of Electro-Osmotic Flow (EOF) in Nano/Micro scales Porous Media with an Inclusive Parameters Study
    Zakeri, Ramin
    Lee, Eon Soo
    Salimi, Mohammad Reza
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2014, VOL 7, 2015,
  • [23] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    Di Fraia, S.
    Massarotti, N.
    Nithiarasu, P.
    MICROFLUIDICS AND NANOFLUIDICS, 2017, 21 (03)
  • [24] Effectiveness of flow obstructions in enhancing electro-osmotic flow
    S. Di Fraia
    N. Massarotti
    P. Nithiarasu
    Microfluidics and Nanofluidics, 2017, 21
  • [25] Suppression of Electro-Osmotic Flow by Surface Roughness
    Messinger, R. J.
    Squires, T. M.
    PHYSICAL REVIEW LETTERS, 2010, 105 (14)
  • [26] Electro-osmotic flows through topographically complicated porous media: Role of electropermeability tensor
    Bandopadhyay, Aditya
    DasGupta, Debabrata
    Mitra, Sushanta K.
    Chakraborty, Suman
    PHYSICAL REVIEW E, 2013, 87 (03):
  • [27] Study of electro-osmotic flow in microfluldic devices
    Sabur, Romena
    Matin, M. A.
    2006 3RD IEEE/EMBS INTERNATIONAL SUMMER SCHOOL ON MEDICAL DEVICES AND BIOSENSORS, 2006, : 126 - +
  • [28] Electro-osmotic flow of semidilute polyelectrolyte solutions
    Uematsu, Yuki
    Araki, Takeaki
    JOURNAL OF CHEMICAL PHYSICS, 2013, 139 (09):
  • [29] ELECTRO-OSMOTIC FLOW WITH FREE SURFACE IN NANOCHANNELS
    Joo, Sang W.
    Qian, Shizhi
    Jiang, Yingtao
    Cheney, Marcos A.
    MICRONANO2008-2ND INTERNATIONAL CONFERENCE ON INTEGRATION AND COMMERCIALIZATION OF MICRO AND NANOSYSTEMS, PROCEEDINGS, 2008, : 543 - 547
  • [30] Electro-osmotic nanofluid flow in a curved microchannel
    Narla, V. K.
    Tripathi, Dharmendra
    Beg, O. Anwar
    CHINESE JOURNAL OF PHYSICS, 2020, 67 : 544 - 558