Reference priors for exponential families

被引:11
|
作者
Gutiérrez-Peña, E [1 ]
Rueda, R [1 ]
机构
[1] Univ Nacl Autonoma Mexico, IIMAS, Dept Probabilidad & Estadist, Mexico City 01000, DF, Mexico
关键词
affine dual foliations; Bayesian inference; cut; natural exponential family; quadratic variance function; reference prior;
D O I
10.1016/S0378-3758(01)00281-6
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Reference analysis, introduced by Bernardo (J. Roy. Statist. Soc. 41 (1979) 113) and further developed by Berger and Bernardo (On the development of reference priors (with discussion). In: J.M. Bernardo, J.O. Berger, A.P. Dawid, A.F.M. Smith (Eds.), Bayesian Statistics, Vol. 4, Clarendon Press, Oxford, pp. 35-60), has proved to be one of the most successful general methods to derive noninformative prior distributions. In practice, however, reference priors are typically difficult to obtain. In this paper we show how to find reference priors for a wide class of exponential family likelihoods. (C) 2001 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:35 / 54
页数:20
相关论文
共 50 条
  • [41] Clustering above Exponential Families with Tempered Exponential Measures
    Amid, Ehsan
    Nock, Richard
    Warmuth, Manfred K.
    INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 206, 2023, 206
  • [42] A characterization of Riesz exponential families
    Lajmi, S
    COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1997, 325 (08): : 915 - 920
  • [43] A note on exponential families of distributions
    Brody, Dorje C.
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (30) : F691 - F695
  • [44] SUFFICIENT STATISTICS AND EXPONENTIAL FAMILIES
    HIPP, C
    ANNALS OF STATISTICS, 1974, 2 (06): : 1283 - 1292
  • [45] OPTIMALLY APPROXIMATING EXPONENTIAL FAMILIES
    Rauh, Johannes
    KYBERNETIKA, 2013, 49 (02) : 199 - 215
  • [46] Stability for multivariate exponential families
    Balkema A.A.
    Klüppelberg C.
    Resnick S.I.
    Journal of Mathematical Sciences, 2001, 106 (2) : 2777 - 2791
  • [47] Information closures of exponential families
    Csiszár, I
    Matús, F
    2004 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY, PROCEEDINGS, 2004, : 30 - 30
  • [48] Generalized variance and exponential families
    Hassairi, A
    ANNALS OF STATISTICS, 1999, 27 (01): : 374 - 385
  • [49] LINEAR STATISTICS AND EXPONENTIAL FAMILIES
    DAVIES, L
    BARINGHAUS, L
    ANNALS OF THE INSTITUTE OF STATISTICAL MATHEMATICS, 1978, 30 (02) : 297 - 314