Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions

被引:259
|
作者
Dehghan, Mehdi [1 ]
Shokri, Ali [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran, Iran
关键词
Nonlinear Klein-Gordon equation; Collocation; Radial basis functions (RBF); Thin plate splines (TPS); PARTIAL-DIFFERENTIAL-EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; DATA APPROXIMATION SCHEME; DECOMPOSITION METHOD; PARABOLIC EQUATION; WAVE SOLUTIONS; COLLOCATION; INTERPOLATION; MULTIQUADRICS; CONVERGENCE;
D O I
10.1016/j.cam.2008.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. In this paper, we propose a numerical scheme to solve the one-dimensional nonlinear Klein-Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using Thin Plate Splines (TPS) radial basis functions (RBF). The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 50 条
  • [31] Solution of the Klein-Gordon equation in the Carter A solution
    SilvaOrtigoza, G
    [J]. REVISTA MEXICANA DE FISICA, 1996, 42 (04) : 543 - 549
  • [32] On the application of Ateb-functions to the construction of an asymptotic solution of the perturbed nonlinear Klein-Gordon equation
    Mitropol'skii Y.A.
    Sokil B.I.
    [J]. Ukrainian Mathematical Journal, 1998, 50 (5) : 754 - 760
  • [33] Numerical solution of time fractional nonlinear Klein-Gordon equation using Sinc-Chebyshev collocation method
    Nagy, A. M.
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2017, 310 : 139 - 148
  • [34] Numerical solution of nonlinear Klein-Gordon equation using the element-free kp-Ritz method
    Guo, P. F.
    Liew, K. M.
    Zhu, P.
    [J]. APPLIED MATHEMATICAL MODELLING, 2015, 39 (10-11) : 2917 - 2928
  • [35] Numerical Approximation of Nonlinear Klein-Gordon Equation Using an Element-Free Approach
    Huang, Dong-mei
    Zou, Guo-liang
    Zhang, L. W.
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
  • [36] ON THE ROTATING NONLINEAR KLEIN-GORDON EQUATION: NONRELATIVISTIC LIMIT AND NUMERICAL METHODS
    Mauser, Norbert J.
    Zhang, Yong
    Zhao, Xiaofei
    [J]. MULTISCALE MODELING & SIMULATION, 2020, 18 (02): : 999 - 1024
  • [37] Fourth-order compact solution of the nonlinear Klein-Gordon equation
    Dehghan, Mehdi
    Mohebbi, Akbar
    Asgari, Zohreh
    [J]. NUMERICAL ALGORITHMS, 2009, 52 (04) : 523 - 540
  • [38] Numerical Solution of Time-Fractional Klein-Gordon Equation by Using the Decomposition Methods
    Jafari, Hossein
    [J]. JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (04):
  • [39] Fourth-order compact solution of the nonlinear Klein-Gordon equation
    Mehdi Dehghan
    Akbar Mohebbi
    Zohreh Asgari
    [J]. Numerical Algorithms, 2009, 52 : 523 - 540
  • [40] NUMERICAL-SOLUTION OF A NON-LINEAR KLEIN-GORDON EQUATION
    STRAUSS, W
    VAZQUEZ, L
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 28 (02) : 271 - 278