Numerical solution of the nonlinear Klein-Gordon equation using radial basis functions

被引:259
|
作者
Dehghan, Mehdi [1 ]
Shokri, Ali [1 ]
机构
[1] Amirkabir Univ Technol, Dept Appl Math, Fac Math & Comp Sci, Tehran, Iran
关键词
Nonlinear Klein-Gordon equation; Collocation; Radial basis functions (RBF); Thin plate splines (TPS); PARTIAL-DIFFERENTIAL-EQUATIONS; COMPUTATIONAL FLUID-DYNAMICS; DATA APPROXIMATION SCHEME; DECOMPOSITION METHOD; PARABOLIC EQUATION; WAVE SOLUTIONS; COLLOCATION; INTERPOLATION; MULTIQUADRICS; CONVERGENCE;
D O I
10.1016/j.cam.2008.12.011
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The nonlinear Klein-Gordon equation is used to model many nonlinear phenomena. In this paper, we propose a numerical scheme to solve the one-dimensional nonlinear Klein-Gordon equation with quadratic and cubic nonlinearity. Our scheme uses the collocation points and approximates the solution using Thin Plate Splines (TPS) radial basis functions (RBF). The implementation of the method is simple as finite difference methods. The results of numerical experiments are presented, and are compared with analytical solutions to confirm the good accuracy of the presented scheme. (C) 2008 Elsevier B.V. All rights reserved.
引用
收藏
页码:400 / 410
页数:11
相关论文
共 50 条
  • [1] Numerical solution of the nonlinear Klein-Gordon equation
    Rashidinia, J.
    Ghasemi, M.
    Jalilian, R.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) : 1866 - 1878
  • [2] Numerical Solution of Nonlinear Klein-Gordon Equation Using Polynomial Wavelets
    Rashidinia, Jalil
    Jokar, Mahmood
    [J]. INTELLIGENT MATHEMATICS II: APPLIED MATHEMATICS AND APPROXIMATION THEORY, 2016, 441 : 199 - 214
  • [3] Numerical Solution of Space-Time Fractional Klein-Gordon Equation by Radial Basis Functions and Chebyshev Polynomials
    Bansu H.
    Kumar S.
    [J]. International Journal of Applied and Computational Mathematics, 2021, 7 (5)
  • [4] On the Numerical Solution of the Klein-Gordon Equation
    Bratsos, A. G.
    [J]. NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2009, 25 (04) : 939 - 951
  • [5] THE MESHLESS METHODS FOR NUMERICAL SOLUTION OF THE NONLINEAR KLEIN-GORDON EQUATION
    Rashidinia, J.
    Karmipour, Y.
    Nikan, O.
    [J]. TWMS JOURNAL OF APPLIED AND ENGINEERING MATHEMATICS, 2021, 11 (02): : 436 - 447
  • [6] A New Approach to Numerical Solution of Nonlinear Klein-Gordon Equation
    Bulbul, Berna
    Sezer, Mehmet
    [J]. MATHEMATICAL PROBLEMS IN ENGINEERING, 2013, 2013
  • [7] Operational Solution to the Nonlinear Klein-Gordon Equation
    Bengochea, G.
    Verde-Star, L.
    Ortigueira, M.
    [J]. COMMUNICATIONS IN THEORETICAL PHYSICS, 2018, 69 (05) : 506 - 512
  • [8] EXACT SOLUTION TO A NONLINEAR KLEIN-GORDON EQUATION
    BURT, PB
    REID, JL
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1976, 55 (01) : 43 - 45
  • [9] Numerical Solution of A Linear Klein-Gordon Equation
    Kasron, Noraini
    Nasir, Mohd Agos Salim
    Yasiran, Siti Salmah
    Othman, Khairil Iskandar
    [J]. 2013 INTERNATIONAL CONFERENCE ON ELECTRICAL, ELECTRONICS AND SYSTEM ENGINEERING (ICEESE), 2013, : 74 - 78
  • [10] Operational Solution to the Nonlinear Klein-Gordon Equation
    G.Bengochea
    L.Verde-Star
    M.Ortigueira
    [J]. Communications in Theoretical Physics, 2018, 69 (05) : 506 - 512