Improved adaptive Gaussian mixture model for background subtraction

被引:1501
|
作者
Zivkovic, Z [1 ]
机构
[1] Univ Amsterdam, Intelligent & Autonomous Syst Grp, Amsterdam, Netherlands
关键词
D O I
10.1109/ICPR.2004.1333992
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background subtraction is a common computer vision task. We analyze the usual pixel-level approach. We develop an efficient adaptive algorithm using Gaussian mixture probability density. Recursive equations are used to constantly update the parameters and but also to simultaneously select the appropriate number of components for each pixel.
引用
收藏
页码:28 / 31
页数:4
相关论文
共 50 条
  • [21] Improved Gaussian Mixture Model with Background Spotter for the Extraction of Moving Objects
    Farou, Brahim
    Seridi, Hamid
    Akdag, Herman
    [J]. INTERNATIONAL ARAB JOURNAL OF INFORMATION TECHNOLOGY, 2016, 13 (6A) : 807 - 816
  • [22] Moving Object Detection Based on an Improved Gaussian Mixture Background Model
    Yan, Rui
    Song, Xuehua
    Yan, Shu
    [J]. 2009 ISECS INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT, VOL I, 2009, : 12 - 15
  • [23] Background Subtraction with a Hierarchical Pitman-Yor Process Mixture Model of Generalized Gaussian Distributions
    Amudala, Srikanth
    Ali, Samr
    Bouguila, Nizar
    [J]. 2020 IEEE 21ST INTERNATIONAL CONFERENCE ON INFORMATION REUSE AND INTEGRATION FOR DATA SCIENCE (IRI 2020), 2020, : 112 - 119
  • [24] Bayesian Learning of Infinite Asymmetric Gaussian Mixture Models for Background Subtraction
    Song, Ziyang
    Ali, Samr
    Bouguila, Nizar
    [J]. IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I, 2019, 11662 : 264 - 274
  • [25] MULTI-MODAL BACKGROUND SUBTRACTION USING GAUSSIAN MIXTURE MODELS
    Langmann, Benjamin
    Ghobadi, Seyed E.
    Hartmann, Klaus
    Loffeld, Otmar
    [J]. PCV 2010 - PHOTOGRAMMETRIC COMPUTER VISION AND IMAGE ANALYSIS, PT I, 2010, 38 : 61 - 66
  • [26] Block-Wise Background Subtraction Based on Gaussian Mixture Models
    Yazdi, Mehran
    Bagherzadeh, Mohammad A.
    Jokar, Mehdi
    Abasi, Mohammad A.
    [J]. MECHANICAL DESIGN AND POWER ENGINEERING, PTS 1 AND 2, 2014, 490-491 : 1221 - 1227
  • [27] An Improved Gaussian Mixture Model
    Gong Dayong
    Wang Zhihua
    [J]. INTERNATIONAL CONFERENCE ON GRAPHIC AND IMAGE PROCESSING (ICGIP 2012), 2013, 8768
  • [28] A Moving Target Recognition Algorithm Based on Improved Mixture Gaussian Background Model
    Zhang Yongmei
    Ma Li
    Liu Mengmeng
    Sun Haiyan
    [J]. PROCEEDINGS OF 2017 INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2017), 2017, : 99 - 102
  • [29] Background subtraction using generalised Gaussian family model
    Kim, H.
    Sakamoto, R.
    Kitahara, I.
    Toriyama, T.
    Kogure, K.
    [J]. ELECTRONICS LETTERS, 2008, 44 (03) : 189 - 190
  • [30] Adaptive learning algorithm based on mixture Gaussian background
    Zha Yufei & Bi Duyan Signal and Information Processing Lab
    [J]. Journal of Systems Engineering and Electronics, 2007, (02) : 369 - 376