Aging in amorphous solids: A study of the first-passage time and persistence time distributions

被引:5
|
作者
Siboni, Nima H. [1 ]
Raabe, Dierk [1 ]
Varnik, Fathollah [2 ]
机构
[1] Max Planck Inst Eisenforsch GmbH, D-40237 Dusseldorf, Germany
[2] Ruhr Univ Bochum, Interdisciplinary Ctr Adv Mat Simulat, D-44780 Bochum, Germany
关键词
LENNARD-JONES MIXTURE; MODE-COUPLING THEORY; GLASS; DYNAMICS; RHEOLOGY; LIQUIDS;
D O I
10.1209/0295-5075/111/48004
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The time distribution of relaxation events in an aging system is investigated via molecular-dynamics simulations. The focus is on the distribution functions of the first-passage time, p(1)(Delta t), and the persistence time, p(T). In contrast to previous reports, both p(1) and p are found to evolve with time upon aging. The age dependence of the persistence time distribution is shown to be sensitive to the details of the algorithm used to extract it from particle trajectories. By updating the reference point in event detection algorithm and accounting for the event specific aging time, we uncover the age dependence of p(T), hidden to previous studies. Moreover, the apparent age dependence of p(1) in continuous time random walk with an age-independent p(T) is shown to result from an implicit synchronization of all the random walkers at the starting time. Copyright (C) EPLA, 2015
引用
收藏
页数:6
相关论文
共 50 条
  • [31] Neutron number first-passage time distribution and the reactor time constant
    V. V. Ryazanov
    [J]. Atomic Energy, 2011, 110 : 376 - 388
  • [32] Mean first-passage time in optical bistable systems
    Ning Li-Juan
    Xu Wei
    [J]. CHINESE PHYSICS LETTERS, 2006, 23 (12) : 3180 - 3182
  • [33] First-passage time analysis for Markovian deteriorating model
    Dohnal, Gejza
    [J]. SAFETY, RELIABILITY AND RISK ANALYSIS: THEORY, METHODS AND APPLICATIONS, VOLS 1-4, 2009, : 1847 - 1850
  • [34] First-passage time for stability analysis of the Kaldor model
    Chu, PC
    [J]. CHAOS SOLITONS & FRACTALS, 2006, 27 (05) : 1355 - 1368
  • [35] Differentiability and monotonicity of expected passage time in Euclidean first-passage percolation
    Howard, CD
    [J]. JOURNAL OF APPLIED PROBABILITY, 2001, 38 (04) : 815 - 827
  • [36] First-passage time of cyclization dynamics of a wormlike polymer
    Chen, JZY
    Tsao, HK
    Sheng, YJ
    [J]. EUROPHYSICS LETTERS, 2004, 65 (03): : 407 - 413
  • [37] Estimating network topology by the mean first-passage time
    Yang, Pu
    Wang, Qun
    Zheng, Zhigang
    [J]. PHYSICAL REVIEW E, 2012, 86 (02)
  • [38] First-passage time of run-and-tumble particles
    L. Angelani
    R. Di Leonardo
    M. Paoluzzi
    [J]. The European Physical Journal E, 2014, 37
  • [39] First-passage time of run-and-tumble particles
    Angelani, L.
    Di Leonardo, R.
    Paoluzzi, M.
    [J]. EUROPEAN PHYSICAL JOURNAL E, 2014, 37 (07):
  • [40] Conditional moments of the first-passage time of a crowed population
    Cabral-Garcia, Gabrieladejesus
    Villa-Morales, Jose
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2024, 470