High Accuracy Predictive Model on Breast Cancer Using Ensemble Approach of Supervised Machine Learning Algorithms

被引:1
|
作者
Kaul, Chaitanya [1 ]
Sharma, Neeraj [1 ]
机构
[1] Amity Univ Gurugram, Amity Sch Engn & Technol, Gurgaon, India
关键词
KNN; SVM; Random Forest; Breast Cancer; Decision Tree Classifiers;
D O I
10.1109/ComPE53109.2021.9752254
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research article is based on the ensemble approach of different supervised machine learning algorithms to identify the early stages of breast cancer problems. The World Health Organization (WHO) approved that existence of the breast tumor is high for the women in developing countries and it is one of the significant research issues in current scenario in the real world. In this research article researcher used the 30 features to extract and predict accurate prediction on breast cancer using ensemble approach of supervised machine learning algorithms. It is a great challenge in designing a machine learning model to evaluate the performance of the classification of breast tumor. Implementing an efficient classification methodology will support in resolving the complications in analyzing breast cancer. This proposed model employs four machine learning (ML) algorithms Decision tree classifiers, Random Forest KNN, and support vector machine (SVM) and found support vector machine (SVM) which given the high accuracy of 0.976688 among them for the categorization of breast tumor in women. This classification includes the two levels of disease as benign or malignant. The researcher also used the other parameters and evaluated this predictive model using Precision, Recall and F1-Score. The data analysis report is proved that this predictive model is having 98% accuracy level to predict the cancer at early stages in women.
引用
收藏
页码:71 / +
页数:6
相关论文
共 50 条
  • [21] Predictive breast cancer diagnosis using ensemble fuzzy model
    Yu, Xiaohui
    Tian, Jingjun
    Chen, Zhipeng
    Meng, Yizhen
    Zhang, Jun
    IMAGE AND VISION COMPUTING, 2024, 148
  • [22] Comparative Analysis of Supervised Machine Learning Algorithms to Build a Predictive Model for Evaluating Students' Performance
    El Guabassi, Inssaf
    Bousalem, Zakaria
    Marah, Rim
    Qazdar, Aimad
    INTERNATIONAL JOURNAL OF ONLINE AND BIOMEDICAL ENGINEERING, 2021, 17 (02) : 90 - 105
  • [23] Prognosis and Prediction of Breast Cancer Using Machine Learning and Ensemble-Based Training Model
    Gupta, Niharika
    Kaushik, Bau Nath
    COMPUTER JOURNAL, 2023, 66 (01): : 70 - 85
  • [24] Predictive Analysis Of Breast Cancer Using Machine Learning Techniques
    Agrawal, Rashmi
    INGENIERIA SOLIDARIA, 2019, 15 (29):
  • [25] Predicting the recurrence of breast cancer using machine learning algorithms
    Alzu'bi, Amal
    Najadat, Hassan
    Doulat, Wesam
    Al-Shari, Osama
    Zhou, Leming
    MULTIMEDIA TOOLS AND APPLICATIONS, 2021, 80 (09) : 13787 - 13800
  • [26] Classification of Breast Cancer Data Using Machine Learning Algorithms
    Akbugday, Burak
    2019 MEDICAL TECHNOLOGIES CONGRESS (TIPTEKNO), 2019, : 429 - 432
  • [27] Predicting the recurrence of breast cancer using machine learning algorithms
    Amal Alzu’bi
    Hassan Najadat
    Wesam Doulat
    Osama Al-Shari
    Leming Zhou
    Multimedia Tools and Applications, 2021, 80 : 13787 - 13800
  • [28] Prediction of Breast Cancer Using Simple Machine Learning Algorithms
    Devi, Seeta
    Dumbre, Dipali
    Chavan, Ranjana
    2024 INTERNATIONAL CONFERENCE ON ADVANCES IN COMPUTING, COMMUNICATION AND APPLIED INFORMATICS, ACCAI 2024, 2024,
  • [29] Breast Cancer: Classification of Tumors Using Machine Learning Algorithms
    Hettich, David
    Olson, Megan
    Jackson, Andie
    Kaabouch, Naima
    2021 IEEE INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND VIRTUAL ENVIRONMENTS FOR MEASUREMENT SYSTEMS AND APPLICATIONS (IEEE CIVEMSA 2021), 2021,
  • [30] Modeling and Predictive Analytics of Breast Cancer Using Ensemble Learning Techniques: An Explainable Artificial Intelligence Approach
    Raha, Avi Deb
    Dihan, Fatema Jannat
    Gain, Mrityunjoy
    Murad, Saydul Akbar
    Adhikary, Apurba
    Hossain, Md. Bipul
    Hassan, Md. Mehedi
    Al-Shehari, Taher
    Alsadhan, Nasser A.
    Kadrie, Mohammed
    Bairagi, Anupam Kumar
    Computers, Materials and Continua, 2024, 81 (03): : 4033 - 4048