SATO-TATE CONJECTURE

被引:0
|
作者
Carayol, Henri [1 ,2 ]
机构
[1] Univ Strasbourg, Inst Rech Math Avancee, F-67084 Strasbourg, France
[2] CNRS, F-67084 Strasbourg, France
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
引用
收藏
页码:345 / 391
页数:47
相关论文
共 50 条
  • [21] Effective Sato-Tate conjecture for abelian varieties and applications
    Bucur, Alina
    Fite, Francesc
    Kedlaya, Kiran S.
    JOURNAL OF THE EUROPEAN MATHEMATICAL SOCIETY, 2024, 26 (05) : 1713 - 1746
  • [22] Galois representations, automorphic forms, and the Sato-Tate Conjecture
    Michael Harris
    Indian Journal of Pure and Applied Mathematics, 2014, 45 : 707 - 746
  • [23] Sato-Tate distributions
    Sutherland, Andrew V.
    ANALYTIC METHODS IN ARITHMETIC GEOMETRY, 2019, 740 : 197 - 248
  • [24] On the Sato-Tate conjecture for QM-curves of genus two
    Hashimoto, K
    Tsunogai, H
    MATHEMATICS OF COMPUTATION, 1999, 68 (228) : 1649 - 1662
  • [25] AN UNCONDITIONAL EXPLICIT BOUND ON THE ERROR TERM IN THE SATO-TATE CONJECTURE
    Hoey, Alexandra
    Iskander, Jonas
    Jin, Steven
    Suarez, Fernando Trejos
    QUARTERLY JOURNAL OF MATHEMATICS, 2022, 73 (04): : 1189 - 1225
  • [26] On the Sato-Tate conjecture on average for some families of elliptic curves
    Shparlinski, Igor E.
    FORUM MATHEMATICUM, 2013, 25 (03) : 647 - 664
  • [27] ON THE SATO-TATE CONJECTURE FOR NON-GENERIC ABELIAN SURFACES
    Johansson, Christian
    Fite, Francesc
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 369 (09) : 6303 - 6325
  • [28] Odd moments for the trace of Frobenius and the Sato-Tate conjecture in arithmetic progressions
    Bringmann, Kathrin
    Kane, Ben
    Pujahari, Sudhir
    FINITE FIELDS AND THEIR APPLICATIONS, 2024, 98
  • [29] Refinements on vertical Sato-Tate
    Ma, Zhao Yu
    ACTA ARITHMETICA, 2024, 216 (01) : 63 - 97
  • [30] The Sato-Tate conjecture for a Picard curve with complex multiplication (with an appendix by Francesc Fite)
    Lario, Joan-Carles
    Somoza, Anna
    NUMBER THEORY RELATED TO MODULAR CURVES: MOMOSE MEMORIAL VOLUME, 2018, 701 : 151 - 165