Impact of gate workfunction on device performance at the 50 nm technology node

被引:162
|
作者
De, I [1 ]
Johri, D [1 ]
Srivastava, A [1 ]
Osburn, CM [1 ]
机构
[1] N Carolina State Univ, Dept Elect Engn, Ctr Adv Elect Mat Proc, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
gate workfunction; super steep retrograde; channel engineering;
D O I
10.1016/S0038-1101(99)00323-8
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The optimal gate electrode workfunction was determined for the 50 nm technology node using a simulation strategy that takes into account the impact of short-channel effects on device performance in uniformly doped and super-steep-retrograde doped channels in conventional and dynamic threshold operation. Classical device simulations suggest that the optimal workfunction is such that the gate Fermi level is 0.2 eV below (above) the conduction (valence) band edge of silicon for NMOS (PMOS) devices. However, when quantum mechanical effects are taken into account, the optimal workfunction is such that the gate Fermi level coincides with the conduction (valence) band edge. Midgap gates are not viable because the resulting short-channel effects are too severe. In a surrounding-gate transistor the optimal workfunction is attained when the gate Fermi level is 0.35 eV below (above) the conduction (valence) band edge in NMOS (PMOS) device. Midgap gates are not viable because the resulting threshold voltage is too high and cannot be reduced by lowering the substrate doping. (C) 2000 Published by Elsevier Science Ltd. All rights reserved.
引用
收藏
页码:1077 / 1080
页数:4
相关论文
共 50 条
  • [31] Dimensional Effect on Analog/RF Performance of Dual Material Gate Junctionless FinFET at 7 nm Technology Node
    Kusuma, Rambabu
    Talari, V. K. Hanumantha Rao
    [J]. TRANSACTIONS ON ELECTRICAL AND ELECTRONIC MATERIALS, 2023, 24 (03) : 178 - 187
  • [32] Performance Analysis of Ultra-thin-Body, Double-Gate pMOSFETs at 5 nm Technology Node
    Khaliq, Afshan
    Yin, Wen-Yan
    [J]. 2020 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO 2020), 2020,
  • [33] Effect of fin shape of tapered FinFETs on the device performance in 5-nm node CMOS technology
    Kurniawan, Erry Dwi
    Yang, Hao
    Lin, Chia-Chou
    Wu, Yung-Chun
    [J]. MICROELECTRONICS RELIABILITY, 2018, 83 : 254 - 259
  • [34] The application of CPL reticle technology for the 65 & 50nm node
    Conley, W
    van den Broeke, D
    Socha, R
    Wu, W
    Litt, L
    Lucas, K
    Nelson-Thomas, C
    Roman, B
    Chen, F
    Wampler, K
    Laidig, T
    Hsu, S
    Schaefer, E
    Cassel, S
    Yu, L
    Kasprowicz, B
    Progler, C
    Petersen, J
    Gerold, D
    Maslow, M
    [J]. OPTICAL MICROLITHOGRAPHY XVI, PTS 1-3, 2003, 5040 : 392 - 398
  • [35] Accurate gate CD control for 130nm CMOS technology node
    Nagase, M
    Yokota, K
    Mituiki, A
    Tokashiki, K
    [J]. 2003 IEEE INTERNATIONAL SYMPOSIUM ON SEMICONDUCTOR MANUFACTURING, CONFERENCE PROCEEDINGS, 2003, : 183 - 186
  • [36] Cleaning of metal gate stacks for the sub-90 nm technology node
    Snow, J
    Kraus, H
    Vermeyen, K
    Fyen, W
    Mertens, PW
    Kovacs, F
    [J]. CLEANING TECHNOLOGY IN SEMICONDUCTOR DEVICE MANUFACTURING VIII, 2004, 2003 (26): : 393 - 399
  • [37] Double-Gate CMOS evaluation for 45nm technology node
    Chiang, MH
    An, JX
    Krivokapic, Z
    Yu, B
    [J]. NANOTECH 2003, VOL 2, 2003, : 326 - 329
  • [38] Multi-gate devices for the 32nm technology node and beyond
    Collaert, N.
    De Keersgieter, A.
    Dixit, A.
    Ferain, I.
    Lai, L. -S.
    Lenoble, D.
    Mercha, A.
    Nackaerts, A.
    Pawlak, B. J.
    Rooyackers, R.
    Schulz, T.
    San, K. T.
    Son, N. J.
    Van Dald, M. J. H.
    Verheyen, P.
    von Amim, K.
    Witters, L.
    De Meyer, K.
    Biesemans, S.
    Jurczak, M.
    [J]. ESSDERC 2007: PROCEEDINGS OF THE 37TH EUROPEAN SOLID-STATE DEVICE RESEARCH CONFERENCE, 2007, : 143 - +
  • [39] Impact of ULK restoration techniques on propagation performance for interconnects of the 45 nm technology node and below
    Gallitre, M.
    Blampey, B.
    Chaabouni, H.
    Farcy, A.
    Grosgeorges, P.
    Lacrevaz, T.
    Bermond, C.
    Flechet, B.
    Ancey, P.
    [J]. 2008 IEEE WORKSHOP ON SIGNAL PROPAGATION ON INTERCONNECTS, 2008, : 254 - +
  • [40] Threshold Voltage Extraction Techniques for Device @ 16 nm Technology Node
    Tyagi, Sarika
    Dwivedi, Amit Krishna
    Pal, Basab Bijoy
    Islam, Animul
    [J]. 2015 INTERNATIONAL CONFERENCE ON SMART SENSORS AND SYSTEMS (IC-SSS 2015), 2015,