Boosting and classification of electronic nose data

被引:0
|
作者
Masulli, F
Pardo, M
Sberveglieri, G
Valentini, G
机构
[1] INFM, I-16146 Genoa, Italy
[2] Univ Pisa, Dipartimento Informat, I-56125 Pisa, Italy
[3] INFM, I-25123 Brescia, Italy
[4] Dipartimento Chim & Fis, I-25123 Brescia, Italy
[5] Univ Genoa, DISI, I-16146 Genoa, Italy
来源
MULTIPLE CLASSIFIER SYSTEMS | 2002年 / 2364卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Boosting methods are known to improve generalization performances of learning algorithms reducing both bias and variance or enlarging the margin of the resulting multi-classifier system. In this contribution we applied Adaboost to the discrimination of different types of coffee using data produced with an Electronic Nose. Two groups of coffees (blends and monovarieties), consisting of seven classes each, have been analyzed. The boosted ensemble of Multi-Layer Perceptrons was able to halve the classification error for the blends data and to diminish it from 21% to 18% for the more difficult monovarieties data set.
引用
收藏
页码:262 / 271
页数:10
相关论文
共 50 条
  • [21] Electronic tongue and electronic nose data fusion in classification with neural networks and fuzzy logic based models
    Sundic, T
    Marco, S
    Samitier, J
    Wide, P
    IMTC/2000: PROCEEDINGS OF THE 17TH IEEE INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE: SMART CONNECTIVITY: INTEGRATING MEASUREMENT AND CONTROL, 2000, : 1474 - 1479
  • [22] Classification of Coffee Variety using Electronic Nose
    Delmo, Jen Aldwayne B.
    Villarica, Mia V.
    Vinluan, Albert A.
    2022 IEEE 18TH INTERNATIONAL COLLOQUIUM ON SIGNAL PROCESSING & APPLICATIONS (CSPA 2022), 2022, : 248 - 253
  • [23] Simultaneous classification and concentration estimation for electronic nose
    Huang, Dongliang
    Leung, Henry
    IEEE SENSORS JOURNAL, 2007, 7 (5-6) : 825 - 834
  • [24] Classification of Rice by Combining Electronic Tongue and Nose
    Lu, Lin
    Deng, Shaoping
    Zhu, Zhiwei
    Tian, Shiyi
    FOOD ANALYTICAL METHODS, 2015, 8 (08) : 1893 - 1902
  • [25] Classification of white wine aromas with an electronic nose
    Lozano, J
    Santos, JP
    Horrillo, MC
    TALANTA, 2005, 67 (03) : 610 - 616
  • [26] Classification of Agarwood Oil Using an Electronic Nose
    Hidayat, Wahyu
    Shakaff, Ali Yeon Md.
    Ahmad, Mohd Noor
    Adom, Abdul Hamid
    SENSORS, 2010, 10 (05): : 4675 - 4685
  • [27] Classification of Rice by Combining Electronic Tongue and Nose
    Lin Lu
    Shaoping Deng
    Zhiwei Zhu
    Shiyi Tian
    Food Analytical Methods, 2015, 8 : 1893 - 1902
  • [28] Classification of garlic cultivars using an electronic nose
    Trirongjitmoah, Suchin
    Juengmunkong, Zongporn
    Srikulnath, Kornsorn
    Somboon, Pakpum
    COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2015, 113 : 148 - 153
  • [29] An Electronic Nose System for Aromatic Rice Classification
    Abdullah, A. H.
    Adom, A. H.
    Shakaff, A. Y. Md
    Ahmad, M. N.
    Zakaria, A.
    Fikri, N. A.
    Omar, O.
    SENSOR LETTERS, 2011, 9 (02) : 850 - 855
  • [30] Robust Classification of Largely Corrupted Electronic Nose Data Using Deep Neural Networks
    Yoo, YoungJoon
    Kim, Hyun-Il
    Choi, Sang-Il
    IEEE SENSORS JOURNAL, 2021, 21 (04) : 5052 - 5059