Simulated Annealing Monte Carlo Tree Search for large POMDPs

被引:2
|
作者
Xiong, Kai [1 ]
Jiang, Hong [1 ]
机构
[1] Southwest Univ Sci & Technol, Mianyang 621010, Si Chuan, Peoples R China
关键词
Simulated Annealing; MCTS; POMDPs;
D O I
10.1109/IHMSC.2014.42
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many planning and control problems can be modeled as large POMDPs, but very few can be solved scalably because of their computational complexity. This paper proposes a Simulated Annealing based on the Monte Carlo Tree Search for large POMDPs. The proposed algorithm determines an acceptance probability of sampling a back-propagation's outcome in the simulated annealing process. The experiments show that the proposed SAMCTS (Simulated Annealing Monte Carlo Tree Search) outperforms the original Simulated Annealing algorithm when applied to a large POMDP benchmark problem.
引用
收藏
页码:140 / 143
页数:4
相关论文
共 50 条
  • [21] The Development of a Simulated Car Racing Controller Based on Monte-Carlo Tree Search
    Hou, Jia-Hao
    Wang, Tsaipei
    [J]. 2016 CONFERENCE ON TECHNOLOGIES AND APPLICATIONS OF ARTIFICIAL INTELLIGENCE (TAAI), 2016, : 104 - 109
  • [22] A Monte Carlo Update for Parametric POMDPs
    Brooks, Alex
    Williams, Stefan
    [J]. ROBOTICS RESEARCH, 2010, 66 : 213 - 223
  • [23] Nested Monte-Carlo Tree Search for Online Planning in Large MDPs
    Baier, Hendrik
    Winands, Mark H. M.
    [J]. 20TH EUROPEAN CONFERENCE ON ARTIFICIAL INTELLIGENCE (ECAI 2012), 2012, 242 : 109 - 114
  • [24] Simulated annealing: A Monte Carlo method for GPS surveying
    Fidanova, Stefka
    [J]. COMPUTATIONAL SCIENCE - ICCS 2006, PT 1, PROCEEDINGS, 2006, 3991 : 1009 - 1012
  • [25] Approximation Methods for Monte Carlo Tree Search
    Aksenov, Kirill
    Panov, Aleksandr, I
    [J]. PROCEEDINGS OF THE FOURTH INTERNATIONAL SCIENTIFIC CONFERENCE INTELLIGENT INFORMATION TECHNOLOGIES FOR INDUSTRY (IITI'19), 2020, 1156 : 68 - 74
  • [26] A TUTORIAL INTRODUCTION TO MONTE CARLO TREE SEARCH
    Fu, Michael C.
    [J]. 2020 WINTER SIMULATION CONFERENCE (WSC), 2020, : 1178 - 1193
  • [27] Monte Carlo Tree Search for Trading and Hedging
    Vittori, Edoardo
    Likmeta, Amarildo
    Restelli, Marcello
    [J]. ICAIF 2021: THE SECOND ACM INTERNATIONAL CONFERENCE ON AI IN FINANCE, 2021,
  • [28] LinUCB applied to Monte Carlo tree search
    Mandai, Yusaku
    Kaneko, Tomoyuki
    [J]. THEORETICAL COMPUTER SCIENCE, 2016, 644 : 114 - 126
  • [29] Monte-Carlo Tree Search for Logistics
    Edelkamp, Stefan
    Gath, Max
    Greulich, Christoph
    Humann, Malte
    Herzog, Otthein
    Lawo, Michael
    [J]. COMMERCIAL TRANSPORT, 2016, : 427 - 440
  • [30] A Survey of Monte Carlo Tree Search Methods
    Browne, Cameron B.
    Powley, Edward
    Whitehouse, Daniel
    Lucas, Simon M.
    Cowling, Peter I.
    Rohlfshagen, Philipp
    Tavener, Stephen
    Perez, Diego
    Samothrakis, Spyridon
    Colton, Simon
    [J]. IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) : 1 - 43