Optical solitons for the fractional (3+1)-dimensional NLSE with power law nonlinearities by using conformable derivatives

被引:0
|
作者
Korpinar, Z. [1 ]
Inc, M. [2 ,3 ]
Almohsen, B. [4 ]
Bayram, M. [5 ]
机构
[1] Mus Alparslan Univ, Fac Econ & Adm Sci, Dept Adm, Mus, Turkey
[2] Firat Univ, Fac Sci, Dept Math, TR-23119 Elazig, Turkey
[3] China Med Univ, China Med Univ Hosp, Dept Med Res, Taichung, Taiwan
[4] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[5] Biruni Univ, Dept Comp Engn, Istanbul, Turkey
关键词
Optical solitons; Nonlinear Schrodinger equation; Conformable derivative; Power law nonlinearities; The extended direct algebraic method; LINEAR SCHRODINGER-EQUATION; LIE SYMMETRIES;
D O I
10.1007/s12648-020-01853-w
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, the process of the extended direct algebraic method (EDAM) is used to obtain the optical solitons in fractional (3 + 1)-dimensional nonlinear Schrodinger equation through the conformable derivative. Firstly, this fractional equation is changed into the ordinary differential equation by using the wave variables transformation. Then, new several forms of optical solitons are obtained by using EDAM.
引用
收藏
页码:2143 / 2154
页数:12
相关论文
共 50 条
  • [31] A study of optical solitons with Kerr and power law nonlinearities by He's variational principle
    Topkara, Engin
    Milovic, Daniela
    Sarma, Amarendra K.
    Majid, Fayequa
    Biswas, Anjan
    JOURNAL OF THE EUROPEAN OPTICAL SOCIETY-RAPID PUBLICATIONS, 2009, 4
  • [32] Localized structures of the (3+1)-dimensional nonlinear Schrodinger equation with different diffractions and power-law nonlinearities in PT -symmetric potentials
    Wang, Li-Hua
    Li, Ji-Tao
    Li, Shao-Feng
    Liu, Quan-Tao
    EUROPEAN PHYSICAL JOURNAL PLUS, 2016, 131 (06):
  • [33] Bright and dark optical solitons for a new (3+1)-dimensional nonlinear Schrödinger equation
    Wazwaz, Abdul-Majid
    Mehanna, Mona
    OPTIK, 2021, 241
  • [34] Bright solitons and their interactions of the (3+1)-dimensional coupled nonlinear Schrodinger system for an optical fiber
    Sun, Ya
    Tian, Bo
    Wang, Yu-Feng
    Wang, Yun-Po
    Huang, Zhi-Ruo
    MODERN PHYSICS LETTERS B, 2015, 29 (35-36):
  • [35] Bright and dark optical solitons for (3+1)-dimensional hyperbolic nonlinear Schrodinger equation using a variety of distinct schemes
    Wazwaz, Abdul-Majid
    Abu Hammad, Ma'mon
    El-Tantawy, S. A.
    OPTIK, 2022, 270
  • [36] Derivation of optical solitons for perturbed highly dispersive conformable fractional nonlinear Schrödinger equation with sextic-power law refractive index
    Rabie, Wafaa B.
    Ahmed, Hamdy M.
    Akgul, Ali
    OPTICAL AND QUANTUM ELECTRONICS, 2024, 56 (07)
  • [37] Relativistic (3+1)-dimensional nontopological solitons under perturbations
    Elphick, C
    PHYSICAL REVIEW D, 1997, 55 (12): : 7749 - 7753
  • [38] A variety of solitons to the sixth-order dispersive (3+1)-dimensional nonlinear time-fractional Schro¨dinger equation with cubic-quintic-septic nonlinearities
    Mirzazadeh, Mohammad
    Akinyemi, Lanre
    Senol, Mehmet
    Hosseini, Kamyar
    OPTIK, 2021, 241
  • [39] OPTICAL SOLITONS WITH POLYNOMIAL AND TRIPLE-POWER LAW NONLINEARITIES AND SPATIO-TEMPORAL DISPERSION
    Bhrawy, A. H.
    Alshaery, A. A.
    Hilal, E. M.
    Milovic, Daniela
    Moraru, Luminita
    Savescu, Michelle
    Biswas, Anjan
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2014, 15 (03): : 235 - 240
  • [40] Solitons for the (3+1)-dimensional variable-coefficient coupled nonlinear Schrodinger equations in an optical fiber
    Deng, Gao-Fu
    Gao, Yi-Tian
    SUPERLATTICES AND MICROSTRUCTURES, 2017, 109 : 345 - 359