Eigenvalues and eigenstates of the many-body collective neutrino oscillation problem

被引:24
|
作者
Patwardhan, Amol, V [1 ,2 ]
Cervia, Michael J. [2 ]
Balantekin, A. Baha [2 ]
机构
[1] Univ Calif Berkeley, Dept Phys, Berkeley, CA 94720 USA
[2] Univ Wisconsin, Dept Phys, 1150 Univ Ave, Madison, WI 53706 USA
基金
美国国家科学基金会;
关键词
CONVERSION;
D O I
10.1103/PhysRevD.99.123013
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We demonstrate a method to systematically obtain eigenvalues and eigenstates of a many-body Hamiltonian describing collective neutrino oscillations. The method is derived from the Richardson-Gaudin framework, which involves casting the eigenproblem as a set of coupled nonlinear "Bethe ansatz equations," the solutions of which can then be used to parametrize the eigenvalues and eigenvectors. The specific approach outlined in this paper consists of defining auxiliary variables that are related to the Bethe ansatz parameters, thereby transforming the Bethe ansatz equations into a different set of equations that are numerically better behaved and more tractable. We show that it is possible to express not only the eigenvalues, but also the eigenstates, directly in terms of these auxiliary variables without involving the Bethe ansatz parameters themselves. In this paper, we limit ourselves to a two-flavor, single-angle neutrino system.
引用
收藏
页数:17
相关论文
共 50 条
  • [31] Gumbel statistics for entanglement spectra of many-body localized eigenstates
    Buijsman, Wouter
    Gritsev, Vladimir
    Cheianov, Vadim
    PHYSICAL REVIEW B, 2019, 100 (20)
  • [32] GRAVOTHERMAL OSCILLATION IN GRAVITATIONAL MANY-BODY SYSTEMS
    MAKINO, J
    TANEKUSA, J
    SUGIMOTO, D
    PUBLICATIONS OF THE ASTRONOMICAL SOCIETY OF JAPAN, 1986, 38 (06) : 865 - 877
  • [33] MANY-BODY POINT TRANSFORMS IN HARD-CORE MANY-BODY PROBLEM
    WITRIOL, NM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1971, 16 (01): : 108 - &
  • [34] Collective Neutrino Oscillations and Heavy-element Nucleosynthesis in Supernovae: Exploring Potential Effects of Many-body Neutrino Correlations
    Balantekin, A. Baha
    Cervia, Michael J.
    Patwardhan, Amol V.
    Surman, Rebecca
    Wang, Xilu
    ASTROPHYSICAL JOURNAL, 2024, 967 (02):
  • [35] RELATIVISTIC COLLECTIVE VARIABLES FOR MANY-BODY SYSTEMS
    HESS, PO
    MOSHINSKY, M
    GREINER, W
    SCHMIDT, G
    JOURNAL OF PHYSICS G-NUCLEAR AND PARTICLE PHYSICS, 1982, 8 (11) : L179 - L183
  • [36] Entanglement in many-body eigenstates of quantum-chaotic quadratic Hamiltonians
    Lydzba, Patrycja
    Rigol, Marcos
    Vidmar, Lev
    PHYSICAL REVIEW B, 2021, 103 (10)
  • [37] EIGENVALUES IN CONTINUUM OF 2-BODY OR MANY-BODY SCHRODINGER OPERATORS
    MOCHIZUKI, K
    UCHIYAMA, J
    NAGOYA MATHEMATICAL JOURNAL, 1978, 70 (JUL) : 125 - 141
  • [38] Extracting Quantum Many-Body Scarred Eigenstates with Matrix Product States
    Zhang, Shun-Yao
    Yuan, Dong
    Iadecola, Thomas
    Xu, Shenglong
    Deng, Dong-Ling
    PHYSICAL REVIEW LETTERS, 2023, 131 (02)
  • [39] Hill stability in the many-body problem
    L. G. Luk’yanov
    L. P. Nasonova
    G. I. Shirmin
    Astronomy Letters, 2003, 29 : 274 - 277
  • [40] Proteins: A challenging many-body problem
    Frauenfelder, H
    PHILOSOPHICAL MAGAZINE B-PHYSICS OF CONDENSED MATTER STATISTICAL MECHANICS ELECTRONIC OPTICAL AND MAGNETIC PROPERTIES, 1996, 74 (05): : 579 - 585