SMOS-IC: An Alternative SMOS Soil Moisture and Vegetation Optical Depth Product

被引:170
|
作者
Fernandez-Moran, Roberto [1 ,2 ]
Al-Yaari, Amen [1 ]
Mialon, Arnaud [3 ]
Mahmoodi, Ali [3 ]
Al Bitar, Ahmad [3 ]
De lannoy, Gabrielle [4 ]
Rodriguez-Fernandez, Nemesio [3 ]
Lopez-Baeza, Ernesto [2 ]
Kerr, Yann [3 ]
Wigneron, Jean-Pierre [1 ]
机构
[1] INRA, Ctr INRA Bordeaux Aquitaine, URM1391, ISPA, F-33140 Villenave Dornon, France
[2] Univ Valencia, Dept Earth Phys & Thermodynam, Fac Phys, Climatol Satellites Grp, E-46100 Valencia, Spain
[3] CNRS, CESBIO, CNES, IRD,UPS,UMR 5126, F-31401 Toulouse 9, France
[4] Katholieke Univ Leuven, Dept Earth & Environm Sci, B-3001 Heverlee, Belgium
关键词
SMOS; L-band; Level; 3; ECMWF; SMOS-IC; soil moisture; vegetation optical depth; MODIS; NDVI; BAND MICROWAVE EMISSION; L-MEB MODEL; AMSR-E; RETRIEVAL; ROUGHNESS; FORESTS; CALIBRATION; RESOLUTION; ALGORITHM;
D O I
10.3390/rs9050457
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The main goal of the Soil Moisture and Ocean Salinity (SMOS) mission over land surfaces is the production of global maps of soil moisture (SM) and vegetation optical depth (tau) based on multi-angular brightness temperature (TB) measurements at L-band. The operational SMOS Level 2 and Level 3 soil moisture algorithms account for different surface effects, such as vegetation opacity and soil roughness at 4 km resolution, in order to produce global retrievals of SM and t. In this study, we present an alternative SMOS product that was developed by INRA (Institut National de la Recherche Agronomique) and CESBIO (Centre d'Etudes Spatiales de la BIOsphere). One of the main goals of this SMOS-INRA-CESBIO (SMOS-IC) product is to be as independent as possible from auxiliary data. The SMOS-IC product provides daily SM and t at the global scale and differs from the operational SMOS Level 3 (SMOSL3) product in the treatment of retrievals over heterogeneous pixels. Specifically, SMOS-IC is much simpler and does not account for corrections associated with the antenna pattern and the complex SMOS viewing angle geometry. It considers pixels as homogeneous to avoid uncertainties and errors linked to inconsistent auxiliary datasets which are used to characterize the pixel heterogeneity in the SMOS L3 algorithm. SMOS-IC also differs from the current SMOSL3 product (Version 300, V300) in the values of the effective vegetation scattering albedo (omega) and soil roughness parameters. An inter-comparison is presented in this study based on the use of ECMWF (European Center for Medium range Weather Forecasting) SM outputs and NDVI (Normalized Difference Vegetation Index) from MODIS (Moderate-Resolution Imaging Spectroradiometer). A six-year (2010-2015) inter-comparison of the SMOS products SMOS-IC and SMOSL3 SM (V300) with ECMWF SM yielded higher correlations and lower ubRMSD (unbiased root mean square difference) for SMOS-IC over most of the pixels. In terms of tau, SMOS-IC t was found to be better correlated to MODIS NDVI in most regions of the globe, with the exception of the Amazonian basin and the northern mid-latitudes.
引用
收藏
页数:21
相关论文
共 50 条
  • [41] Comparison between SMOS Vegetation Optical Depth products and MODIS vegetation indices over crop zones of the USA
    Lawrence, Heather
    Wigneron, Jean-Pierre
    Richaume, Philippe
    Novello, Nathalie
    Grant, Jennifer
    Mialon, Arnaud
    Al Bitar, Ahmad
    Merlin, Olivier
    Guyon, Dominique
    Leroux, Delphine
    Bircher, Simone
    Kerr, Yann
    [J]. REMOTE SENSING OF ENVIRONMENT, 2014, 140 : 396 - 406
  • [42] Synergy of SMOS microwave radiometer and optical sensors to retrieve soil moisture at global scale
    Cros, Sylvain
    Chanzy, Andre
    Weiss, Marie
    Pellarin, Thierry
    Calvet, Jean-Christophe
    Wigneron, Jean-Pierre
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2008, 46 (03): : 835 - 845
  • [43] Design of an Optimal Soil Moisture Monitoring Network Using SMOS Retrieved Soil Moisture
    Kornelsen, Kurt C.
    Coulibaly, Paulin
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2015, 53 (07): : 3950 - 3959
  • [44] Comparison of SMOS and AMSR-E vegetation optical depth to four MODIS-based vegetation indices
    Grant, J. P.
    Wigneron, J. -P.
    De Jeu, R. A. M.
    Lawrence, H.
    Mialon, A.
    Richaume, P.
    Al Bitar, A.
    Drusch, M.
    van Marle, M. J. E.
    Kerr, Y.
    [J]. REMOTE SENSING OF ENVIRONMENT, 2016, 172 : 87 - 100
  • [45] EVALUATION OF ASSIMILATED SMOS SOIL MOISTURE DATA FOR US CROPLAND SOIL MOISTURE MONITORING
    Yang, Zhengwei
    Shrestha, Ranjay
    Crow, Wade
    Bolten, John
    Mladenova, Iva
    Yu, Genong
    Di, Liping
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 5244 - 5247
  • [46] Soil moisture retrieval from space: The Soil Moisture and Ocean Salinity (SMOS) mission
    Kerr, YH
    Waldteufel, P
    Wigneron, JP
    Martinuzzi, JM
    Font, J
    Berger, M
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2001, 39 (08): : 1729 - 1735
  • [47] TIME SERIES ANALYSIS OF SMOS AND ASCAT: SOIL MOISTURE PRODUCT VALIDATION IN THE RUR AND ERFT CATCHMENTS
    Roetzer, K.
    Montzka, C.
    Bogena, H.
    Wagner, W.
    Kidd, R.
    Vereecken, H.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3716 - 3719
  • [48] A soil moisture and temperature network for SMOS validation in Western Denmark
    Bircher, S.
    Skou, N.
    Jensen, K. H.
    Walker, J. P.
    Rasmussen, L.
    [J]. HYDROLOGY AND EARTH SYSTEM SCIENCES, 2012, 16 (05) : 1445 - 1463
  • [49] SMOSCAT: TOWARDS OPERATIONAL HIGH RESOLUTION SOIL MOISTURE WITH SMOS
    Escorihuela, M. J.
    Merlin, O.
    Escorihuela, A.
    Quintana, P.
    Martinez, D.
    [J]. 2012 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2012, : 3784 - 3786
  • [50] EnOI Optimization for SMOS Soil Moisture Over West Africa
    Lee, Ju Hyoung
    Pellarin, Thierry
    Kerr, Yann H.
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2015, 8 (04) : 1821 - 1829