Neuromorphic Computing for Temporal Scientific Data Classification

被引:6
|
作者
Schuman, Catherine D. [1 ]
Potok, Thomas E. [1 ]
Young, Steven [1 ]
Patton, Robert [1 ]
Perdue, Gabriel [2 ]
Chakma, Gangotree [3 ]
Wyer, Austin [3 ]
Rose, Garrett S. [3 ]
机构
[1] Oak Ridge Natl Lab, Oak Ridge, TN 37830 USA
[2] Fermilab Natl Accelerator Lab, POB 500, Batavia, IL 60510 USA
[3] Univ Tennessee, Knoxville, TN USA
基金
美国国家科学基金会;
关键词
SPIKING NEURAL-NETWORKS; DESIGN; FPGA;
D O I
10.1145/3183584.3183612
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this work, we apply a spiking neural network model and an associated memristive neuromorphic implementation to an application in classifying temporal scientific data. We demonstrate that the spiking neural network model achieves comparable results to a previously reported convolutional neural network model, with significantly fewer neurons and synapses required.
引用
收藏
页数:6
相关论文
共 50 条
  • [41] TECHNOLOGIES FOR LARGE DATA MANAGEMENT IN SCIENTIFIC COMPUTING
    Pace, Alberto
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2014, 25 (02):
  • [42] An acceleration processor for data intensive scientific computing
    Kim, CG
    Kim, HS
    Kang, SH
    Kim, SD
    Han, GH
    IEICE TRANSACTIONS ON INFORMATION AND SYSTEMS, 2004, E87D (07): : 1766 - 1773
  • [43] Deep scientific computing requires deep data
    Kramer, WTC
    Shoshani, A
    Agarwal, DA
    Draney, BR
    Jin, G
    Butler, GF
    Hules, JA
    IBM JOURNAL OF RESEARCH AND DEVELOPMENT, 2004, 48 (02) : 209 - 232
  • [44] Scientific data classification: A case study
    Chirn, GW
    Wang, JTL
    Wang, ZY
    NINTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1997, : 216 - 222
  • [45] Efficient Neuromorphic Reservoir Computing Using Optoelectronic Memristors for Multivariate Time Series Classification
    Su, Jing
    Lu, Jiale
    Sun, Fan
    Zhou, Guangdong
    Duan, Shukai
    Hu, Xiaofang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2023, 33 (06):
  • [46] Material Networks for Neuromorphic Computing
    Matsumoto, Takuya
    TWENTY-NINETH INTERNATIONAL WORKSHOP ON ACTIVE-MATRIX FLATPANEL DISPLAYS AND DEVICES: TFT TECHNOLOGIES AND FPD MATERIALS (AM-FPD 22), 2022, : 179 - 180
  • [47] Classification Accuracy Improvement for Neuromorphic Computing Systems with One-level Precision Synapses
    Wang, Yandan
    Wen, Wei
    Song, Linghao
    Li, Hai
    2017 22ND ASIA AND SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE (ASP-DAC), 2017, : 776 - 781
  • [48] The Impact of Proton-Induced Single Events on Image Classification in a Neuromorphic Computing Architecture
    Brewer, Rachel M.
    Reed, Robert A.
    Moran, Steven L.
    Cox, Jonathan
    Sierawski, Brian D.
    McCurdy, Michael W.
    Zhang, En Xia
    Iyer, Subramanian S.
    Schrimpf, Ronald D.
    Alles, Michael L.
    IEEE TRANSACTIONS ON NUCLEAR SCIENCE, 2020, 67 (01) : 108 - 115
  • [49] Neuromorphic computing with memristive devices
    Wen MA
    Mohammed A.ZIDAN
    Wei D.LU
    Science China(Information Sciences), 2018, 61 (06) : 136 - 144
  • [50] Matrix multiplication by neuromorphic computing
    Lawrence, Sheril
    Yandapalli, Aishwarya
    Rao, Shrisha
    NEUROCOMPUTING, 2021, 431 : 179 - 187