Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance

被引:117
|
作者
Yuan, Yuan [1 ]
Huang, Gui-Fang [1 ]
Hu, Wang-Yu [2 ]
Xiong, Dan-Ni [1 ]
Zhou, Bing-Xin [1 ]
Chang, Shengli [3 ]
Huang, Wei-Qing [1 ]
机构
[1] Hunan Univ, Sch Phys & Elect, Dept Appl Phys, Changsha 410082, Hunan, Peoples R China
[2] Hunan Univ, Sch Mat Sci & Engn, Changsha 410082, Hunan, Peoples R China
[3] Natl Univ Def Technol, Sch Sci, Changsha 410073, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
GRAPHITIC CARBON NITRIDE; LIGHT-DRIVEN PHOTOCATALYSTS; ELECTRONIC-STRUCTURE; G-C3N4; NANOSHEETS; CO2; REDUCTION; EFFICIENT PHOTOCATALYST; CEO2/G-C3N4; COMPOSITES; CONTROLLABLE SYNTHESIS; FACILE SYNTHESIS; NANOCOMPOSITES;
D O I
10.1016/j.jpcs.2017.02.015
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Promoting the spatial separation of photoexcited charge carriers is of paramount significance for photocatalysis. In this work, binary g-C3N4/CeO2 nanosheets are first prepared by pyrolysis and subsequent exfoliation method, then decorated with ZnO nanoparticles to construct g-C3N4/CeO2/ZnO ternary nanocomposites with multi-heterointerfaces. Notably, the type-II staggered band alignments existing between any two of the constituents, as well as the efficient three-level transfer of electron-holes in unique g-C3N4/CeO2/ZnO ternary composites, leads to the robust separation of photoexcited charge carriers, as verified by its photocurrent increased by 8 times under visible light irradiation. The resulting g-C3N4/CeO2/ZnO ternary nanocomposites unveil appreciably increased photocatalytic activity, faster than that of pure g-C3N4, ZnO and g-C3N4/CeO2 by a factor of 11, 4.6 and 3.7, respectively, and good stability toward methylene blue (MB) degradation. The remarkably enhanced photocatalytic activity of g-C3N4/CeO2/ZnO ternary heterostructures can be interpreted in terms of lots of active sites of nanosheet shapes and the efficient charge separation owing to the resulting type-II band alignment with more than one heterointerface and the efficient three-level electron-hole transfer. A plausible mechanism is also elucidated via active species trapping experiments with various scavengers, which indicating that the photogenerated holes and center dot OH radicals play a crucial role in photodegradation reaction under visible light irradiation. This work suggest that the rational design and construction of type II multi-heterostructures is powerful for developing highly efficient and reusable visible-light photocatalysts for environmental purification and energy conversion.
引用
收藏
页码:1 / 9
页数:9
相关论文
共 50 条
  • [21] MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction
    Jianxin Li
    Yuhua Wang
    Yitong Wang
    Yao Guo
    Shiding Zhang
    Haixiang Song
    Xianchang Li
    Qianqian Gao
    Wanyu Shang
    Shuaishuai Hu
    Huibin Zheng
    Xifei Li
    Nano Materials Science, 2023, (02) : 237 - 245
  • [22] MXene Ti3C2 decorated g-C3N4/ZnO photocatalysts with improved photocatalytic performance for CO2 reduction
    Li, Jianxin
    Wang, Yuhua
    Wang, Yitong
    Guo, Yao
    Zhang, Shiding
    Song, Haixiang
    Li, Xianchang
    Gao, Qianqian
    Shang, Wanyu
    Hu, Shuaishuai
    Zheng, Huibin
    Li, Xifei
    NANO MATERIALS SCIENCE, 2023, 5 (02) : 237 - 245
  • [23] ZnO/g-C3N4 S scheme photocatalytic material with visible light response and enhanced photocatalytic performance
    Bi, Kejun
    Qin, Xiaojing
    Cheng, Song
    Liu, Sile
    DIAMOND AND RELATED MATERIALS, 2023, 137
  • [24] Plasma synthesis of Pt/g-C3N4 photocatalysts with enhanced photocatalytic hydrogen generation
    Ding, Jianjun
    Sun, Xuxu
    Wang, Qi
    Li, Dong-sheng
    Li, Xiangyang
    Li, Xiaoxiao
    Chen, Lin
    Zhang, Xian
    Tian, Xingyou
    Ostrikov, Kostya
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 873
  • [25] CeO2/3D g-C3N4 heterojunction deposited with Pt cocatalyst for enhanced photocatalytic CO2 reduction
    Zhao, Xiaoxue
    Guan, Jingru
    Li, Jinze
    Li, Xin
    Wang, Huiqin
    Huo, Pengwei
    Yan, Yongsheng
    APPLIED SURFACE SCIENCE, 2021, 537
  • [26] Construction of exfoliated g-C3N4 nanosheets-BiOCl hybrids with enhanced photocatalytic performance
    Chang, Fei
    Xie, Yunchao
    Zhang, Jian
    Chen, Juan
    Li, Chenlu
    Wang, Jie
    Luo, Jieru
    Deng, Baoqing
    Hu, Xuefeng
    RSC ADVANCES, 2014, 4 (54) : 28519 - 28528
  • [27] N-ZnO/g-C3N4 nanoflowers for enhanced photocatalytic and electrocatalytic performances
    Fareed, Iqra
    Farooq, Masood ul Hassan
    Khan, Muhammad Danish
    Yunas, Muhammad Faran
    Safdar, Muhammad
    Tanveer, Muhammad
    Butt, Faheem K.
    PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2024, 164
  • [28] Construction of Ag-modified ZnO/g-C3N4 heterostructure for enhanced photocatalysis performance
    Liu, Shanshan
    Cheng, Shaoli
    Zheng, Jiale
    Liu, Junhui
    Huang, Mingju
    Journal of Chemical Physics, 2024, 161 (15):
  • [29] Photocatalytic dye degradation and antibacterial activities of CeO2/g-C3N4 nanomaterials for environmental applications
    Shoran, Sachin
    Chaudhary, Sudesh
    Sharma, Anshu
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (44) : 98682 - 98700
  • [30] Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants
    Zhu, Zhi
    Xing, Xiaohan
    Qi, Qi
    Shen, Wenjing
    Wu, Hongyue
    Li, Dongyi
    Li, Binrong
    Liang, Jialin
    Tang, Xu
    Zhao, Jun
    Li, Hongping
    Huo, Pengwei
    CHINESE JOURNAL OF STRUCTURAL CHEMISTRY, 2023, 42 (12)