Dielectric Tunability, Expanding the Function of Metal-Organic Frameworks

被引:4
|
作者
Guo, Jiang-Bin [1 ,2 ]
Chen, Li-Hong [1 ,2 ]
Ke, Hao [1 ,2 ]
Wang, Xuan [1 ,2 ]
Zhao, Hai-Xia [1 ,2 ]
Long, La-Sheng [1 ,2 ]
Zheng, Lan-Sun [1 ,2 ]
机构
[1] Xiamen Univ, Collaborat Innovat Ctr Chem Energy Mat, Coll Chem & Chem Engn, State Key Lab Phys Chem Solid Surfaces, Xiamen 361005, Peoples R China
[2] Xiamen Univ, Dept Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
来源
基金
中国国家自然科学基金;
关键词
dielectric tunability; electron hopping; metal-organic frameworks; MOFs; FERROELECTRICITY; BA0.6SR0.4TIO3; LA2NIMNO6; CERAMICS;
D O I
10.1002/pssr.201700425
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Above room-temperature dielectric tunability is observed in the metal-organic frameworks (MOFs) [NH2(CH3)(2)](n)[(FeFeII)-Fe-III(HCOO)(6)](n) (1) and [NH2(CH3)(2)](n)[(FeFe(1-x)NixII)-Fe-III-Ni-II(HCOO)(6)](n) (x=0.64-0.69) (2). The relative tunability (defined as [E-(0) - E-(E)]/E((0))x100%=E/E((0))x100%) values for 1 are up to 35% (at 410K) for E perpendicular to c and 21% (at 380K) for E||c, while these for 2 are 14% for E perpendicular to c and 11.5% for E||c. Investigation on the mechanism of the dielectric tunability in 1 and 2 reveals that the activation energy for the electron hopping between two adjacent metal ions and the magnetic exchange interaction play a key role in the dielectric tunability of these materials.
引用
收藏
页数:4
相关论文
共 50 条
  • [41] Photonic Metal-Organic Frameworks
    Cong, Cong
    Ma, Huaibo
    [J]. ADVANCED OPTICAL MATERIALS, 2021, 9 (19)
  • [42] Hydrophobic Metal-Organic Frameworks
    Joyaramulu, Kolleboyina
    Geyer, Florian
    Schneemann, Andreas
    Kment, Stepan
    Otyepka, Michal
    Zboril, Radek
    Vollmer, Doris
    Fischer, Roland A.
    [J]. ADVANCED MATERIALS, 2019, 31 (32)
  • [43] Interpenetrating metal-organic frameworks
    Gong, Yun-Nan
    Zhong, Di-Chang
    Lu, Tong-Bu
    [J]. CRYSTENGCOMM, 2016, 18 (15): : 2596 - 2606
  • [44] Metal-Organic Frameworks in Biomedicine
    Horcajada, Patricia
    Gref, Ruxandra
    Baati, Tarek
    Allan, Phoebe K.
    Maurin, Guillaume
    Couvreur, Patrick
    Ferey, Gerard
    Morris, Russell E.
    Serre, Christian
    [J]. CHEMICAL REVIEWS, 2012, 112 (02) : 1232 - 1268
  • [45] MODELING METAL-ORGANIC FRAMEWORKS
    Lofgren, J.
    [J]. ADVANCED MATERIALS & PROCESSES, 2022, 180 (08): : 10 - 10
  • [46] Distinguishing Metal-Organic Frameworks
    Barthel, Senja
    Alexandrov, Eugeny V.
    Proserpio, Davide M.
    Smit, Berend
    [J]. CRYSTAL GROWTH & DESIGN, 2018, 18 (03) : 1738 - 1747
  • [47] Photoelectroactive metal-organic frameworks
    Cong, Cong
    Ma, Huaibo
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (25) : 13065 - 13088
  • [48] Long-afterglow metal-organic frameworks: reversible guest-induced phosphorescence tunability
    Yang, Xiaogang
    Yan, Dongpeng
    [J]. CHEMICAL SCIENCE, 2016, 7 (07) : 4519 - 4526
  • [49] Metal-Organic Frameworks for Energy
    Hou, Chun-Chao
    Xu, Qiang
    [J]. ADVANCED ENERGY MATERIALS, 2019, 9 (23)
  • [50] Switching in Metal-Organic Frameworks
    Bigdeli, Fahime
    Lollar, Christina T.
    Morsali, Ali
    Zhou, Hong-Cai
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (12) : 4652 - 4669