Parameter Optimization for Importance Sampling in Encoded Systems

被引:0
|
作者
Melo, Hallyson L. M. [1 ]
Gurjao, Edmar C. [2 ]
Albert, Bruno B. [2 ]
de Assis, Francisco M. [2 ]
机构
[1] INdT, Recife, PE, Brazil
[2] Univ Fed Campina Grande, GEPOTI, BR-58100000 Campina Grande, Brazil
关键词
Simulation; Importance Sampling; Optimization;
D O I
暂无
中图分类号
TN [电子技术、通信技术];
学科分类号
0809 ;
摘要
In this paper we present a new methodology based on the stochastic gradient descent to optimizing parameters of the biased distribution along importance sampling simulations. A particular aspect of the new technique is that of use of multiple parameters for the simulation of each codeword. An example of application estimating the performance of a encoded system is given.
引用
收藏
页码:95 / +
页数:2
相关论文
共 50 条
  • [31] Multiparametric importance sampling for simulation of radar systems
    Universidad Politecnica de Madrid, Madrid, Spain
    IEEE Trans Aerosp Electron Syst, 1 (123-137):
  • [32] Importance sampling for randomly excited dynamical systems
    Macke, M
    Bucher, C
    JOURNAL OF SOUND AND VIBRATION, 2003, 268 (02) : 269 - 290
  • [33] Adaptive importance sampling for stochastic nonlinear systems
    Hoshiya, M
    Taniguchi, O
    Sutoh, A
    STOCHASTIC STRUCTURAL DYNAMICS, 1999, : 193 - 196
  • [34] Importance sampling of rare events in chaotic systems
    Jorge C. Leitão
    João M. Viana Parente Lopes
    Eduardo G. Altmann
    The European Physical Journal B, 2017, 90
  • [35] An importance sampling for the coded satellite systems with memory
    Ko, SC
    Kim, J
    Kim, JM
    Jung, JW
    ICC'97: 1997 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS - TOWARDS THE KNOWLEDGE MILLENNIUM, CONFERENCE RECORD - VOLS 1-3, 1997, : 1226 - 1230
  • [36] Adaptive importance sampling for optimization under uncertainty problems
    Medina, Juan Camilo
    Taflanidis, Alexandros A.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2014, 279 : 133 - 162
  • [37] ON EFFICIENCIES OF STOCHASTIC OPTIMIZATION PROCEDURES UNDER IMPORTANCE SAMPLING
    Lam, Henry
    Jiang, Guangxin
    Fu, Michael C.
    2018 WINTER SIMULATION CONFERENCE (WSC), 2018, : 1862 - 1873
  • [38] Optimistic Policy Optimization via Multiple Importance Sampling
    Papini, Matteo
    Metelli, Alberto Maria
    Lupo, Lorenzo
    Restelli, Marcello
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [39] Stochastic Optimization with Importance Sampling for Regularized Loss Minimization
    Zhao, Peilin
    Zhang, Tong
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 37, 2015, 37 : 1 - 9
  • [40] Network performance optimization using importance sampling theory
    Feng, B
    Huang, CC
    GLOBECOM 2004: IEEE GLOBAL TELECOMMUNICATIONS CONFERENCE WORKSHOPS, 2004, : 327 - 330