Land, water and carbon footprints of circular bioenergy production systems

被引:71
|
作者
Holmatov, B. [1 ]
Hoekstra, A. Y. [1 ,2 ]
Krol, M. S. [1 ]
机构
[1] Univ Twente, Fac Engn Technol, Twente Water Ctr, Horst Complex Z223,POB 217, NL-7500 AE Enschede, Netherlands
[2] Natl Univ Singapore, Lee Kuan Yew Sch Publ Policy, Inst Water Policy, 469C Bukit Timah Rd, Singapore 259772, Singapore
来源
基金
欧盟地平线“2020”;
关键词
Bioenergy; Biofuel; Energy scenario; Carbon footprint; Land footprint; Sustainable development; Water footprint; LIFE-CYCLE ASSESSMENT; BIODIESEL PRODUCTION; ENERGY CROPS; BIOETHANOL PRODUCTION; ETHANOL-PRODUCTION; GREENHOUSE-GAS; BIO-ETHANOL; NET ENERGY; BLUE; BIOFUEL;
D O I
10.1016/j.rser.2019.04.085
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Renewable energy sources can help combat climate change but knowing the land, water and carbon implications of different renewable energy production mixes becomes a key. This paper systematically applies land, water and carbon footprint accounting methods to calculate resource appropriation and CO(2)eq GHG emissions of two energy scenarios. The '100% scenario' is meant as a thinking exercise and assumes a complete transition towards bioenergy, mostly as bioelectricity and some first-generation biofuel. The 'SDS-bio scenario' is inspired by IEA's sustainable development scenario and assumes a 9.8% share of bioenergy in the final mix, with a high share of first-generation biofuel. Energy inputs into production are calculated by differentiating inputs into fuel versus electricity and exclude fossil fuels used for non-energy purposes. Results suggest that both scenarios can lead to emission savings, but at a high cost of land and water resources. A 100% shift to bioenergy is not possible from water and land perspectives. The SDS-bio scenario, when using the most efficient feedstocks (sugar beet and sugarcane), would still require 11-14% of the global arable land and a water flow equivalent to 18-25% of the current water footprint of humanity. In comparative terms, using sugar or starchy crops to produce bioenergy results in smaller footprints than using oil-bearing crops. Regardless of the choice of crop, converting the biomass to combined heat and power results in smaller land, water and carbon footprints per unit of energy than when converting to electricity alone or liquid biofuel.
引用
收藏
页码:224 / 235
页数:12
相关论文
共 50 条
  • [41] Choosing reference land use for carbon and biodiversity footprints
    Soimakallio, Sampo
    Norros, Veera
    Aroviita, Jukka
    Heikkinen, Risto K.
    Lehtoranta, Suvi
    Myllyviita, Tanja
    Pihlainen, Sampo
    Sironen, Susanna
    Toivonen, Marjaana
    INTERNATIONAL JOURNAL OF LIFE CYCLE ASSESSMENT, 2025, 30 (01): : 54 - 65
  • [42] Water quality assessment of bioenergy production
    Diaz-Chavez, Rocio
    Berndes, Goran
    Neary, Daniel
    Elia Neto, Andre
    Fall, Mamadou
    BIOFUELS BIOPRODUCTS & BIOREFINING-BIOFPR, 2011, 5 (04): : 445 - 463
  • [43] Converting bahiagrass pasture land to elephantgrass bioenergy production enhances biomass yield and water quality
    Reyes-Cabrera, Joel
    Erickson, John. E.
    Leon, Ramon G.
    Silveira, Maria L.
    Rowland, Diane L.
    Sollenberger, Lynn E.
    Morgan, Kelly T.
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2017, 248 : 20 - 28
  • [44] Produced Water Treatment with Simultaneous Bioenergy Production Using Novel Bioelectrochemical Systems
    Naraghi, Zahra Ghasemi
    Yaghmaei, Soheila
    Mardanpour, Mohammad Mandi
    Hasany, Masoud
    ELECTROCHIMICA ACTA, 2015, 180 : 535 - 544
  • [45] Trade-offs between land and water requirements for large-scale bioenergy production
    Bonsch, Markus
    Humpenoeder, Florian
    Popp, Alexander
    Bodirsky, Benjamin
    Dietrich, Jan Philipp
    Rolinski, Susanne
    Biewald, Anne
    Lotze-Campen, Hermann
    Weindl, Isabelle
    Gerten, Dieter
    Stevanovic, Miodrag
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2016, 8 (01): : 11 - 24
  • [46] Landowner willingness to supply marginal land for bioenergy production
    Skevas, Theodoros
    Hayden, Noel J.
    Swinton, Scott M.
    Lupi, Frank
    LAND USE POLICY, 2016, 50 : 507 - 517
  • [47] Bioenergy and water - the implications of large-scale bioenergy production for water use and supply
    Berndes, G
    GLOBAL ENVIRONMENTAL CHANGE-HUMAN AND POLICY DIMENSIONS, 2002, 12 (04): : 253 - 271
  • [48] Carbon, energy and water footprints analysis of rapeseed oil production: A case study in China
    Ji, Changxing
    Zhai, Yijie
    Zhang, Tianzuo
    Shen, Xiaoxu
    Bai, Yueyang
    Hong, Jinglan
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2021, 287
  • [49] Carbon balance of sugarcane bioenergy systems
    Beeharry, RP
    BIOMASS & BIOENERGY, 2001, 20 (05): : 361 - 370
  • [50] Land-use change to bioenergy production in Europe: implications for the greenhouse gas balance and soil carbon
    Don, Axel
    Osborne, Bruce
    Hastings, Astley
    Skiba, Ute
    Carter, Mette S.
    Drewer, Julia
    Flessa, Heinz
    Freibauer, Annette
    Hyvonen, Niina
    Jones, Mike B.
    Lanigan, Gary J.
    Mander, Uelo
    Monti, Andrea
    Djomo, Sylvestre Njakou
    Valentine, John
    Walter, Katja
    Zegada-Lizarazu, Walter
    Zenone, Terenzio
    GLOBAL CHANGE BIOLOGY BIOENERGY, 2012, 4 (04): : 372 - 391