Corrosion of vessel steel during its interaction with molten corium. Part 1: Experimental

被引:17
|
作者
Bechta, S. V. [1 ]
Khabensky, V. B.
Vitol, S. A.
Krushinov, E. V.
Granovsky, V. S.
Lopukh, D. B.
Gusarov, V. V.
Martinov, A. P.
Martinov, V. V.
Fieg, G.
Tromm, W.
Bottomley, D.
Tuomisto, H.
机构
[1] NITI, Sci Res Technol Inst, Sosnovyi Bor 188540, Leningrad Oblas, Russia
[2] SPb Electrotech Univ, SPbGETU, St Petersburg 197376, Russia
[3] Russian Acad Sci, Inst Silicate Chem, St Petersburg 199155, Russia
[4] FZK, Inst Neutronenphys & Reaktortech, D-78021 Karlsruhe, Germany
[5] ITU, Gen Direkt GFS, Europa Kommiss, D-76125 Karlsruhe, Germany
[6] Fortum Engn Ltd, FORTUM, Vantaa 00048, Finland
关键词
D O I
10.1016/j.nucengdes.2005.12.011
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This paper is concerned with corrosion of a cooled vessel steel structure interacting with molten corium in air and neutral (nitrogen) atmospheres during an in-vessel retention scenario. The data on corrosion kinetics at different temperatures on the heated steel surface, heat flux densities and oxygen potential in the system are presented. The post-test physico-chemical and metallographic analyses of melt samples and the corium-specimen ingot have clarified certain mechanisms of steel corrosion taking place during the in-vessel melt interaction. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:1810 / 1829
页数:20
相关论文
共 50 条
  • [31] Thermochemical Modeling of Metal Composition and Its Impact on the Molten Corium-Concrete Interaction: New Insights with Sensitivity Analysis
    Khurshid, Ilyas
    Afgan, Imran
    Addad, Yacine
    ENERGIES, 2022, 15 (09)
  • [32] Influence of Different Atmospheres on Molten Salt Chemistry and its Effect on Steel Corrosion
    Bonk, Alexander
    Braun, Markus
    Hanke, Andrea
    Forstner, Jochen
    Rueckle, Dagmar
    Kaesche, Stefanie
    Soetz, Veronika A.
    Bauer, Thomas
    INTERNATIONAL CONFERENCE ON CONCENTRATING SOLAR POWER AND CHEMICAL ENERGY SYSTEMS (SOLARPACES 2017), 2018, 2033
  • [33] Dynamic interaction of refractory and molten steel: Corrosion mechanism of alumina-magnesia castables
    Huang, Ao
    Wang, Yajie
    Zou, Yongshun
    Gu, Huazhi
    Fu, Lvping
    CERAMICS INTERNATIONAL, 2018, 44 (12) : 14617 - 14624
  • [34] Theoretical Model on Heterocoagulation of Inclusion in Molten Steel and its Experimental Verification: Part II. Cold Model Experiment
    Arai, Hirotada
    Nakamura, Yuki
    Shimasaki, Shin-ichi
    Taniguchi, Shoji
    TETSU TO HAGANE-JOURNAL OF THE IRON AND STEEL INSTITUTE OF JAPAN, 2015, 101 (02): : 139 - 147
  • [35] Interaction of corrosion defects in pipelines - Part 1: Fundamentals
    Benjamin, Adilson C.
    Freire, Jose Luiz F.
    Vieira, Ronaldo D.
    Cunha, Divino J. S.
    INTERNATIONAL JOURNAL OF PRESSURE VESSELS AND PIPING, 2016, 144 : 56 - 62
  • [36] The Pursuit of a Green Carbon Steel Corrosion Inhibitor - Part 1
    LaBrosse, Matthew
    Erickson, Donovan
    MATERIALS PERFORMANCE, 2014, 53 (08) : 46 - 49
  • [37] Experimental study and cellular automata simulation of corrosion behavior of ferritic stainless steel in molten aluminum
    Ji-yin Long
    Tian-tian Zhao
    Mei-yi Yuan
    Yi-tao Yang
    Journal of Iron and Steel Research International, 2022, 29 : 1485 - 1494
  • [38] Experimental study and cellular automata simulation of corrosion behavior of ferritic stainless steel in molten aluminum
    Long, Ji-yin
    Zhao, Tian-tian
    Yuan, Mei-yi
    Yang, Yi-tao
    JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL, 2022, 29 (09) : 1485 - 1494
  • [39] Nitrogen control during autogenous arc welding of stainless steel - Part 1: Experimental observations
    Du Toit, M
    Pistorius, PC
    WELDING JOURNAL, 2003, 82 (08) : 219S - 224S
  • [40] Nitrogen control during autogenous arc welding of stainless steel - Part 1: Experimental observations
    Toit, M. Du
    Pistorius, P.C.
    Welding Journal (Miami, Fla), 2003, 82 (08):