The thermal conductivity of Earth's lower mantle

被引:43
|
作者
Tang, Xiaoli [1 ]
Ntam, Moses C. [2 ]
Dong, Jianjun [2 ]
Rainey, Emma S. G. [1 ]
Kavner, Abby [1 ]
机构
[1] Univ Calif Los Angeles, Earth Planetary & Space Sci Dept, Los Angeles, CA 90095 USA
[2] Auburn Univ, Dept Phys, Auburn, AL 36849 USA
基金
美国国家科学基金会;
关键词
lower mantle; D'; mantle heat flow; thermal conductivity; first-principles calculations; radiative heat flow; POST-PEROVSKITE; HEAT-FLUX; PRESSURE-DEPENDENCE; MGSIO3; PEROVSKITE; MGO; DIFFUSIVITY; BOUNDARY; PERICLASE; FLOW;
D O I
10.1002/2014GL059385
中图分类号
P [天文学、地球科学];
学科分类号
07 ;
摘要
We assess the thermal conductivity of the Earth's lower mantle anchored on our first-principles calculations of lattice thermal conductivity of MgSiO3 perovskite. Our calculations agree with measurements of iron-free perovskite at ambient conditions and show a lower pressure dependence compared with other recent calculations. In addition, we show that the effect of iron on the lattice thermal conductivity of silicate perovskite is likely to be small at high temperatures. To provide an assessment of thermal conductivity throughout the lower mantle, we reevaluate existing high-pressure optical absorption data to constrain an upper bound radiative contribution to diffusive heat transfer and examine a composite model for combining thermal conductivity of oxide and perovskite phases in the lower mantle. We find that the overall thermal conductivity of the lower mantle is approximately constant between 2.5 and 3.5W/m/K. These values imply that the mantle has a blanketing effect on heat flow across the core-mantle boundary.
引用
收藏
页码:2746 / 2752
页数:7
相关论文
共 50 条
  • [31] Influence of composition-dependent thermal conductivity on the long-term evolution of primordial reservoirs in Earth's lower mantle
    Yang Li
    Frédéric Deschamps
    Zhidong Shi
    Joshua M. Guerrero
    Wen-Pin Hsieh
    Liang Zhao
    Paul J. Tackley
    [J]. Earth, Planets and Space, 74
  • [32] Thermal conductivity of corundum and periclase and implications for the lower mantle
    Manga, M
    Jeanloz, R
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 1997, 102 (B2) : 2999 - 3008
  • [33] THERMAL HISTORY OF THE EARTH WITH CONSIDERATION OF THE VARIABLE THERMAL CONDUCTIVITY OF ITS MANTLE
    LUBIMOVA, HA
    [J]. GEOPHYSICAL JOURNAL OF THE ROYAL ASTRONOMICAL SOCIETY, 1958, 1 (02): : 115 - 134
  • [34] Hydration-reduced lattice thermal conductivity of olivine in Earth's upper mantle
    Chang, Yun-Yuan
    Hsieh, Wen-Pin
    Tan, Eh
    Chen, Jiuhua
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (16) : 4078 - 4081
  • [35] Implications of high core thermal conductivity on Earth's coupled mantle and core evolution
    Nakagawa, Takashi
    Tackley, Paul J.
    [J]. GEOPHYSICAL RESEARCH LETTERS, 2013, 40 (11) : 2652 - 2656
  • [36] Crystallography applied to the earth's lower mantle
    Ballaran, Tiziana Boffa
    [J]. ACTA CRYSTALLOGRAPHICA A-FOUNDATION AND ADVANCES, 2018, 74 : E55 - E55
  • [37] Stability of magnesiowustite in Earth's lower mantle
    Lin, JF
    Heinz, DL
    Mao, HK
    Hemley, RJ
    Devine, JM
    Li, J
    Shen, GY
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2003, 100 (08) : 4405 - 4408
  • [38] Metallic layer in the Earth’s lower mantle
    S. G. Ovchinnikov
    T. M. Ovchinnikova
    P. G. Dyad’kov
    V. V. Plotkin
    K. D. Litasov
    [J]. JETP Letters, 2012, 96 : 129 - 132
  • [39] Structure and dynamics of Earth's lower mantle
    Garnero, Edward J.
    McNamara, Allen K.
    [J]. SCIENCE, 2008, 320 (5876) : 626 - 628
  • [40] Metallic layer in the Earth's lower mantle
    Ovchinnikov, S. G.
    Ovchinnikova, T. M.
    Dyad'kov, P. G.
    Plotkin, V. V.
    Litasov, K. D.
    [J]. JETP LETTERS, 2012, 96 (02) : 129 - 132