A Multifunctional, Self-Healing, Self-Adhesive, and Conductive Sodium Alginate/Poly(vinyl alcohol) Composite Hydrogel as a Flexible Strain Sensor

被引:266
|
作者
Zhao, Li [1 ,2 ]
Ren, Zhijun [1 ,2 ]
Liu, Xiong [1 ,2 ]
Ling, Qiangjun [1 ,2 ]
Li, Zhengjun [2 ]
Gu, Haibin [1 ,2 ]
机构
[1] Sichuan Univ, Key Lab Leather Chem & Engn, Minist Educ, Chengdu 610065, Peoples R China
[2] Sichuan Univ, Natl Engn Res Ctr Clean Technol Leather Ind, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
conductive hydrogel; self-healing; self-adhesiveness; responsiveness; strain sensor;
D O I
10.1021/acsami.1c01343
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Hydrogel-based wearable devices have attracted tremendous interest due to their potential applications in electronic skins, soft robotics, and sensors. However, it is still a challenge for hydrogel-based wearable devices to be integrated with high conductivity, a self-healing ability, remoldability, self-adhesiveness, good mechanical strength and high stretchability, good biocompatibility, and stimulus-responsiveness. Herein, multi-functional conductive composite hydrogels were fabricated by a simple one-pot method based on poly(vinyl alcohol) (PVA), sodium alginate (SA), and tannic acid (TA) using borax as a cross-linker. The composite hydrogel network was built by borate ester bonds and hydrogen bonds. The obtained hydrogel exhibited pH- and sugar-responsiveness, high stretchability (780% strain), and fast self-healing performance with healing efficiency (HE) as high as 93.56% without any external stimulus. Additionally, the hydrogel displayed considerable conductive behavior and stable changes of resistance with high sensitivity (gauge factor (GF) = 15.98 at a strain of 780%). The hydrogel was further applied as a strain sensor for monitoring large and tiny human motions with durable stability. Significantly, the healed hydrogel also showed good sensing behavior. This work broadens the avenue for the design and preparation of biocompatible polymer-based hydrogels to promote the application of hydrogel sensors with comfortable wearing feel and high sensitivity.
引用
收藏
页码:11344 / 11355
页数:12
相关论文
共 50 条
  • [1] Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor
    Zheng, Haiyan
    Lin, Nan
    He, Yanyi
    Zuo, Baoqi
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (33) : 40013 - 40031
  • [2] Self-Adhesive, Conductive, and Antibacterial Hydrogel Nanofiber Composite as a Flexible Strain Sensor
    Song, Qingya
    Wang, Kai
    Zhao, Gang
    [J]. ACS APPLIED ELECTRONIC MATERIALS, 2023, 5 (12) : 6947 - 6954
  • [3] A compliant, self-adhesive and self-healing wearable hydrogel as epidermal strain sensor
    Liu, Shuqi
    Zheng, Rongmin
    Chen, Song
    Wu, Yunhui
    Liu, Haizhou
    Wang, Pingping
    Deng, Zhifu
    Liu, Lan
    [J]. JOURNAL OF MATERIALS CHEMISTRY C, 2018, 6 (15) : 4183 - 4190
  • [4] Self-healing, self-adhesive, and stretchable conductive hydrogel for multifunctional sensor prepared by catechol modified nanocellulose stabilized poly(?-thioctic acid)
    Yang, Xinxin
    Zhang, Bowen
    Li, Jingjing
    Shen, Minggui
    Liu, He
    Xu, Xu
    Shang, Shibin
    [J]. CARBOHYDRATE POLYMERS, 2023, 313
  • [5] Synthesis of Self-Adhesive, Self-Healing and Antifreeze Conductive Hydrogels for Flexible Strain sensors
    Yang, Ruxue
    Zhao, Shaolin
    Tu, Zhantong
    Hu, Haowen
    Chen, Xiyue
    Wu, Xin
    [J]. ADVANCED SENSOR RESEARCH, 2024,
  • [6] MWCNTsreinforced conductive, self-healing polyvinyl alcohol/carboxymethyl chitosan/oxidized sodium alginate hydrogel as the strain sensor
    Wu, Lu
    Li, Longwei
    Pan, Lujun
    Wang, Hai
    Bin, Yuezhen
    [J]. JOURNAL OF APPLIED POLYMER SCIENCE, 2021, 138 (06)
  • [7] Self-healing, self-adhesive, stretchable and flexible conductive hydrogels for high-performance strain sensors
    Li, Ruirui
    Ren, Jie
    Li, Meng
    Zhang, Minmin
    Li, Yan
    Yang, Wu
    [J]. SOFT MATTER, 2023, 19 (30) : 5723 - 5736
  • [8] Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor
    Xuejiao Liu
    Yang Bai
    Xiaoxiao Zhao
    Jun Chen
    Xu Chen
    Wensheng Yang
    [J]. Microchimica Acta, 2023, 190
  • [9] Conductive and self-healing hydrogel for flexible electrochemiluminescence sensor
    Liu, Xuejiao
    Bai, Yang
    Zhao, Xiaoxiao
    Chen, Jun
    Chen, Xu
    Yang, Wensheng
    [J]. MICROCHIMICA ACTA, 2023, 190 (04)
  • [10] Facile fabrication of a magnetic self-healing poly(vinyl alcohol) composite hydrogel
    Chen, Mingsen
    Gong, Guisheng
    Zhou, Li
    Zhang, Faai
    [J]. RSC ADVANCES, 2017, 7 (35): : 21476 - 21483