Semi-implicit multiresolution for multiphase flows

被引:0
|
作者
Andrianov, N. [1 ]
Coquel, F. [2 ]
Postel, M. [2 ]
Tran, Q. H. [1 ,3 ]
机构
[1] IFP Energies Nouvelles, Dept Math Appl, F-92852 Rueil Malmaison, France
[2] Univ Paris 06, UMR 7598, Lab Jacques Louis Lions, F-75252 Paris, France
[3] Schlumberger Res & Dev, Moscow 109147, Russia
来源
NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS | 2006年
关键词
D O I
10.1007/978-3-540-34288-5_80
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the context of multiphase flows we are faced with vector PDE solutions combining waves whose speeds are several orders of magnitude apart. The wave of interest is the transport one, and is relatively slow. The other fast acoustic waves are not interesting but impose a very restrictive CFL condition if a fully explicit in time scheme is considered. We therefore use a time semi-implicit conservative scheme where the fast waves are handled with a linearized implicit formulation and the slow wave remains explicitly solved. The CFL condition, governed by the explicit wave speed is then optimal. We combine this method with a multiscale analysis of the vector solution which enables to use a time varying adaptive grid based on the relevant smoothness properties of the discrete solution. In this short paper we compare different strategies to evaluate the fluxes at cells interfaces on a non uniform grid.
引用
收藏
页码:814 / +
页数:2
相关论文
共 50 条
  • [41] DISPERSION CHARACTERISTICS OF IMPLICIT AND SEMI-IMPLICIT DIFFERENCE SCHEMES
    PIACSEK, SA
    BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 1973, 54 (07) : 739 - 739
  • [42] The Convergence of Semi-Implicit Numerical Methods
    Tutueva, Aleksandra V.
    Rodionova, Ekaterina A.
    Baidina, Mariia P.
    Kavunskaia, Anastasiia V.
    Kozak, Maria N.
    PROCEEDINGS OF THE 2019 IEEE CONFERENCE OF RUSSIAN YOUNG RESEARCHERS IN ELECTRICAL AND ELECTRONIC ENGINEERING (EICONRUS), 2019, : 366 - 368
  • [43] A Semi-implicit Generalized Finite Differences Approach to Simulate Natural Convective Viscous Flows
    Raymundo Saucedo-Zendejo, Felix
    Omar Resnediz-Flores, Edgar
    ADVANCES IN DESIGN, SIMULATION AND MANUFACTURING, 2019, : 280 - 288
  • [44] Stability and error analysis of a semi-implicit scheme for incompressible flows with variable density and viscosity
    Vu, An
    Cappanera, Loic
    JOURNAL OF NUMERICAL MATHEMATICS, 2024,
  • [45] SEMI-IMPLICIT TIME INTEGRATION OF ATMOSPHERIC FLOWS WITH CHARACTERISTIC-BASED FLUX PARTITIONING
    Ghosh, Debojyoti
    Constantinescu, Emil M.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2016, 38 (03): : A1848 - A1875
  • [46] An efficient semi-implicit subgrid method for free-surface flows on hierarchical grids
    Platzek, F. W.
    Stelling, G. S.
    Jankowski, J. A.
    Patzwahl, R.
    Pietrzak, J. D.
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2016, 80 (12) : 715 - 741
  • [47] A staggered semi-implicit hybrid FV/FE projection method for weakly compressible flows
    Bermudez, A.
    Busto, S.
    Dumbser, M.
    Ferrin, J. L.
    Saavedra, L.
    Vazquez-Cendon, M. E.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 421
  • [48] Doubly Semi-Implicit Variational Inference
    Molchanov, Dmitry
    Kharitonov, Valery
    Sobolev, Artem
    Vetrov, Dmitry
    22ND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND STATISTICS, VOL 89, 2019, 89
  • [49] Kernel Semi-Implicit Variational Inference
    Cheng, Ziheng
    Yu, Longlin
    Xie, Tianyu
    Zhang, Shiyue
    Zhang, Cheng
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, 2024, 235
  • [50] SELECTION OF GRIDS FOR SEMI-IMPLICIT SCHEMES
    MCGREGOR, JL
    LESLIE, LM
    MONTHLY WEATHER REVIEW, 1977, 105 (02) : 236 - 238