Retrieval of multimedia documents using low cost image ranking algorithms

被引:0
|
作者
Haque, N [1 ]
Chowdhury, MU [1 ]
机构
[1] RMIT Australia, Dept CS, Melbourne, Vic, Australia
关键词
multimedia; image ranking; multimedia documents and image retrieval;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Huge collections of digital multimedia documents are available to computer users through the global Internet and cheap high volume storage and distribution media. Manual indexing of these massive collections is prohibitively expensive, especially when a collection is dynamic; automatic indexing is essential to support multimedia retrieval. Text and images are the most common components of digital documents, but existing search engines do not utilize image evidence in their ranking algorithms. In this paper, we investigate the ranking of digital documents using image features. Experimental results show that multimedia retrieval using image-ranking algorithms can provide higher effectiveness than the retrieval effectiveness of algorithms based on text ranking algorithms for a given type of information needs.
引用
收藏
页码:41 / 44
页数:4
相关论文
共 50 条
  • [21] Heterogeneous Manifold Ranking for Image Retrieval
    Wu, Jun
    He, Yu
    Guo, Xiangnan
    Zhang, Yujia
    Zhao, Na
    IEEE ACCESS, 2017, 5 : 16871 - 16884
  • [22] CONCEPT-BASED INDEXING AND RETRIEVAL OF MULTIMEDIA DOCUMENTS
    DINUBILA, B
    GAGLIARDI, I
    MACCHI, D
    MILANESI, L
    PADULA, M
    PAGANI, R
    JOURNAL OF INFORMATION SCIENCE, 1994, 20 (03) : 185 - 196
  • [23] Semantic retrieval and ranking of Semantic Web documents using free-form queries
    Spiliopoulos, Vassilis
    Kotis, Konstantinos
    Vouros, George A.
    International Journal of Metadata, Semantics and Ontologies, 2008, 3 (02) : 95 - 108
  • [24] The ToCAI Description Scheme for Indexing and Retrieval of Multimedia Documents
    N. Adami
    A. Bugatti
    R. Leonardi
    P. Migliorati
    L.A. Rossi
    Multimedia Tools and Applications, 2001, 14 : 153 - 173
  • [25] Maximum Margin Ranking Algorithms for Information Retrieval
    Agarwal, Shivani
    Collins, Michael
    ADVANCES IN INFORMATION RETRIEVAL, PROCEEDINGS, 2010, 5993 : 332 - 343
  • [26] Using Content Based Image Retrieval Techniques for the Indexing and Retrieval of Thai Handwritten Documents
    Sangsawad, Seksan
    Fung, Chun Che
    2010 2ND INTERNATIONAL CONFERENCE ON COMPUTER AND AUTOMATION ENGINEERING (ICCAE 2010), VOL 1, 2010, : 98 - 101
  • [27] SECURE MEDICAL IMAGE RETRIEVAL USING FAST IMAGE PROCESSING ALGORITHMS
    Lafta, Sameer Abdulsttar
    Rafash, Amaal Ghazi Hamad
    Al-falahi, Noaman Ahmed Yaseen
    Hussein, Hussein Abdulqader
    Abdulkareem, Mohanad Mahdi
    SCALABLE COMPUTING-PRACTICE AND EXPERIENCE, 2024, 25 (05): : 4323 - 4334
  • [28] Image Retrieval with Structured Object Queries Using Latent Ranking SVM
    Lan, Tian
    Yang, Weilong
    Wang, Yang
    Mori, Greg
    COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 129 - 142
  • [29] Web image retrieval using majority-based ranking approach
    Park, Gunhan
    Baek, Yunju
    Lee, Heung-Kyu
    MULTIMEDIA TOOLS AND APPLICATIONS, 2006, 31 (02) : 195 - 219
  • [30] Content based image retrieval using manifold-ranking of blocks
    Wan, Xiaojun
    2007 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, VOLS 1-5, 2007, : 2182 - 2185