Meta-learning via search combined with parameter optimization

被引:0
|
作者
Duch, W [1 ]
Grudzinski, K [1 ]
机构
[1] Nicholas Copernicus Univ, Dept Informat, PL-87100 Torun, Poland
来源
INTELLIGENT INFORMATION SYSTEMS 2002, PROCEEDINGS | 2002年 / 17卷
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Framework for Similarity-Based Methods (SBMs) allows to create many algorithms that differ in important aspects. Although no single learning algorithm may outperform other algorithms on all data an almost optimal algorithm may be found within the SBM framework. To avoid tedious experimentation a meta-learning search procedure in the space of all possible algorithms is used to build new algorithms. Each new algorithm is generated by applying admissible extensions to the existing algorithms and the most promising are retained and extended further. Training is performed using parameter optimization techniques. Preliminary tests of this approach are very encouraging.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [21] Meta-Learning for Black-Box Optimization
    Vishnu, T. V.
    Malhotra, Pankaj
    Narwariya, Jyoti
    Vig, Lovekesh
    Shroff, Gautam
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, ECML PKDD 2019, PT II, 2020, 11907 : 366 - 381
  • [22] Meta weight learning via model-agnostic meta-learning
    Xu, Zhixiong
    Chen, Xiliang
    Tang, Wei
    Lai, Jun
    Cao, Lei
    NEUROCOMPUTING, 2021, 432 : 124 - 132
  • [23] Meta-Learning Priors for Safe Bayesian Optimization
    Rothfuss, Jonas
    Koenig, Christopher
    Rupenyan, Alisa
    Krause, Andreas
    CONFERENCE ON ROBOT LEARNING, VOL 205, 2022, 205 : 237 - 265
  • [24] Bilevel Programming for Hyperparameter Optimization and Meta-Learning
    Franceschi, Luca
    Frasconi, Paolo
    Salzo, Saverio
    Grazzi, Riccardo
    Pontil, Massimilano
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [25] Edge Sparsification for Graphs via Meta-Learning
    Wan, Guihong
    2021 IEEE 37TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2021), 2021, : 2733 - 2738
  • [26] Automatic Modulation Classification via Meta-Learning
    Hao, Xiaoyang
    Feng, Zhixi
    Yang, Shuyuan
    Wang, Min
    Jiao, Licheng
    IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (14) : 12276 - 12292
  • [27] Dynamic Graph Embedding via Meta-Learning
    Mao, Yuren
    Hao, Yu
    Cao, Xin
    Fang, Yixiang
    Lin, Xuemin
    Mao, Hua
    Xu, Zhiqiang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (07) : 2967 - 2979
  • [28] Incremental Object Detection via Meta-Learning
    Joseph, K. J.
    Rajasegaran, Jathushan
    Khan, Salman
    Khan, Fahad Shahbaz
    Balasubramanian, Vineeth N.
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2022, 44 (12) : 9209 - 9216
  • [29] Meta-Learning via Weighted Gradient Update
    Xu, Zhixiong
    Cao, Lei
    Chen, Xiliang
    IEEE ACCESS, 2019, 7 : 110846 - 110855
  • [30] Personalizing Dialogue Agents via Meta-Learning
    Madotto, Andrea
    Lin, Zhaojiang
    Wu, Chien-Sheng
    Fung, Pascale
    57TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2019), 2019, : 5454 - 5459