Meta-learning via search combined with parameter optimization

被引:0
|
作者
Duch, W [1 ]
Grudzinski, K [1 ]
机构
[1] Nicholas Copernicus Univ, Dept Informat, PL-87100 Torun, Poland
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Framework for Similarity-Based Methods (SBMs) allows to create many algorithms that differ in important aspects. Although no single learning algorithm may outperform other algorithms on all data an almost optimal algorithm may be found within the SBM framework. To avoid tedious experimentation a meta-learning search procedure in the space of all possible algorithms is used to build new algorithms. Each new algorithm is generated by applying admissible extensions to the existing algorithms and the most promising are retained and extended further. Training is performed using parameter optimization techniques. Preliminary tests of this approach are very encouraging.
引用
收藏
页码:13 / 22
页数:10
相关论文
共 50 条
  • [1] Meta-learning for evolutionary parameter optimization of classifiers
    Reif, Matthias
    Shafait, Faisal
    Dengel, Andreas
    [J]. MACHINE LEARNING, 2012, 87 (03) : 357 - 380
  • [2] Meta-learning for evolutionary parameter optimization of classifiers
    Matthias Reif
    Faisal Shafait
    Andreas Dengel
    [J]. Machine Learning, 2012, 87 : 357 - 380
  • [3] Initializing Bayesian Hyperparameter Optimization via Meta-Learning
    Feurer, Matthias
    Springenberg, Jost Tobias
    Hutter, Frank
    [J]. PROCEEDINGS OF THE TWENTY-NINTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2015, : 1128 - 1135
  • [4] MetaSearch: Incremental Product Search via Deep Meta-Learning
    Wang, Qi
    Liu, Xinchen
    Liu, Wu
    Liu, An-An
    Liu, Wenyin
    Mei, Tao
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 7549 - 7564
  • [5] Multi-objective Optimization and Meta-learning for SVM Parameter Selection
    Miranda, Pericles B. C.
    Prudencio, Ricardo B. C.
    de Carvalho, Andre Carlos P. L. F.
    Soares, Carlos
    [J]. 2012 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2012,
  • [6] Quantum Architecture Search with Meta-Learning
    He, Zhimin
    Chen, Chuangtao
    Li, Lvzhou
    Zheng, Shenggen
    Situ, Haozhen
    [J]. ADVANCED QUANTUM TECHNOLOGIES, 2022, 5 (08)
  • [7] Face Super-Resolution via Meta-Learning Optimization Network
    Wang, Hui
    Lu, Tao
    Wang, Yu
    Zhang, Yanduo
    [J]. 2021 4TH INTERNATIONAL CONFERENCE ON ROBOTICS, CONTROL AND AUTOMATION ENGINEERING (RCAE 2021), 2021, : 60 - 64
  • [8] Meta-Learning with Differentiable Convex Optimization
    Lee, Kwonjoon
    Maji, Subhransu
    Ravichandran, Avinash
    Soatto, Stefano
    [J]. 2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, : 10649 - 10657
  • [9] Contextualizing Meta-Learning via Learning to Decompose
    Ye, Han-Jia
    Zhou, Da-Wei
    Hong, Lanqing
    Li, Zhenguo
    Wei, Xiu-Shen
    Zhan, De-Chuan
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (01) : 117 - 133
  • [10] On Parameter Tuning in Meta-learning for Computer Vision
    Mohammadi, Farid Ghareh
    Arabnia, Hamid R.
    Amini, M. Hadi
    [J]. 2019 6TH INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE AND COMPUTATIONAL INTELLIGENCE (CSCI 2019), 2019, : 300 - 305