Thermal stiffening of hydrophobic association hydrogels

被引:12
|
作者
Owusu-Nkwantabisah, Silas [1 ]
Gillmor, Jeffrey [2 ]
Bennett, Grace [1 ]
Slater, Gary [2 ]
Szakasits, Megan [3 ]
Rajeswaran, Manju [2 ]
Antalek, Brian [2 ]
机构
[1] Eastman Kodak Co, Kodak Res Labs, 1999 Lake Ave, Rochester, NY 14650 USA
[2] Eastman Kodak Co, Tech Solut Div, 1999 Lake Ave, Rochester, NY 14650 USA
[3] Univ Michigan, Dept Chem Engn, Ann Arbor, MI 48109 USA
关键词
Thermal stiffening; Self-healing hydrogel; Stimuli-responsive; DOUBLE-NETWORK HYDROGELS; MODIFIED SUPRAMOLECULAR HYDROGELS; STRUCTURAL REARRANGEMENT; TOUGH; BIOMATERIALS;
D O I
10.1016/j.polymer.2018.05.022
中图分类号
O63 [高分子化学(高聚物)];
学科分类号
070305 ; 080501 ; 081704 ;
摘要
Strong and tough hydrogels, important for several materials and bio-applications, typically consist of nanocomposites and double networks. There is the need to create hydrogels that exhibit tunable mechanical properties on demand without compromising other functional properties. This work demonstrates the rapid thermal stiffening of a hydrophobic association hydrogel while maintaining its optical quality and chemical composition. Up to 100-fold increase in modulus of the methacrylate-based hydrogel was achieved by an increase in temperature from 25 degrees C to 50 degrees C. Based on various characterizations, we proposed that the thermal stiffening is related to the polymer conformational changes and the ensuing increase in inter-chain hydrophobic associations at the expense of intra-chain associations. The temperature above which thermal stiffening occurs can be tuned with the polymer content in the hydrogel. Furthermore, hydrogels containing a lower mole fraction of the hydrophobic groups exhibit unusual "gel-sol-gel" transitions with temperature increase. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:374 / 381
页数:8
相关论文
共 50 条
  • [21] Construction and Properties of Hydrophobic Association Hydrogels with High Mechanical Strength and Reforming Capability
    Jiang, Guoqing
    Liu, Chang
    Liu, Xiaoli
    Zhang, Guohui
    Yang, Meng
    Liu, Fengqi
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2009, 294 (12) : 815 - 820
  • [22] Chitosan-anthracene hydrogels as controlled stiffening networks
    Batool, Syeda Rubab
    Nazeer, Muhammad Anwaar
    Yildiz, Erdost
    Sahin, Afsun
    Kizilel, Seda
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2021, 185 : 165 - 175
  • [23] Measurement of the stiffening parameter for stimuli-responsive hydrogels
    C. C. Benjamin
    R. S. Lakes
    W. C. Crone
    Acta Mechanica, 2018, 229 : 3715 - 3725
  • [24] Tuning Strain Stiffening of Protein Hydrogels by Charge Modification
    Gu, Jie
    Guo, Yu
    Li, Yiran
    Wang, Juan
    Wang, Wei
    Cao, Yi
    Xue, Bin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (06)
  • [25] Measurement of the stiffening parameter for stimuli-responsive hydrogels
    Benjamin, C. C.
    Lakes, R. S.
    Crone, W. C.
    ACTA MECHANICA, 2018, 229 (09) : 3715 - 3725
  • [26] Strain Stiffening and Negative Normal Force of Agarose Hydrogels
    Martikainen, Lahja
    Bertula, Kia
    Turunen, Matti
    Ikkala, Olli
    MACROMOLECULES, 2020, 53 (22) : 9983 - 9992
  • [27] Mechanics and structure of strain-stiffening biomimetic hydrogels
    Jaspers, Maarten
    Rowan, Alan
    Kouwer, Paul H. J.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2016, 251
  • [28] Progressively Self-Stiffening Hydrogels for Tissue Engineering
    Pramanik, Bapan
    Bu, Wenhuan
    D'este, Matteo
    Dawson, Jonathan
    Oreffo, Richard
    Sun, Hongchen
    Mata, Alvaro
    TISSUE ENGINEERING PART A, 2023, 29 (13-14)
  • [29] Designing Biomimetic Strain-Stiffening into Synthetic Hydrogels
    Prince, Elisabeth
    BIOMACROMOLECULES, 2024, 25 (10) : 6283 - 6295
  • [30] Strain Stiffening and Negative Normal Stress in Alginate Hydrogels
    Hashemnejad, Seyed Meysam
    Kundu, Santanu
    JOURNAL OF POLYMER SCIENCE PART B-POLYMER PHYSICS, 2016, 54 (17) : 1767 - 1775