Time-dependent elastic response to a local shear transformation in amorphous solids

被引:50
|
作者
Puosi, F. [1 ]
Rottler, J. [2 ]
Barrat, J-L. [1 ,3 ]
机构
[1] Univ Grenoble 1, CNRS, LIPhy UMR 5588, F-38041 Grenoble, France
[2] Univ British Columbia, Dept Phys & Astron, Vancouver, BC V6T 1Z4, Canada
[3] Inst Max Von Laue Paul Langevin, F-38042 Grenoble, France
来源
PHYSICAL REVIEW E | 2014年 / 89卷 / 04期
关键词
MODEL; FLOW; REARRANGEMENTS; DEFORMATION; DYNAMICS;
D O I
10.1103/PhysRevE.89.042302
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
The elastic response of a two-dimensional amorphous solid to induced local shear transformations, which mimic the elementary plastic events occurring in deformed glasses, is investigated via molecular-dynamics simulations. We show that for different spatial realizations of the transformation, despite relative fluctuations of order one, the long-time equilibrium response averages out to the prediction of the Eshelby inclusion problem for a continuum elastic medium. We characterize the effects of the underlying dynamics on the propagation of the elastic signal. A crossover from a propagative transmission in the case of weakly damped dynamics to a diffusive transmission for strong damping is evidenced. In the latter case, the full time-dependent elastic response is in agreement with the theoretical prediction, obtained by solving the diffusion equation for the displacement field in an elastic medium.
引用
收藏
页数:7
相关论文
共 50 条
  • [31] Nonlinear Response for Time-Dependent External Fields: Shear Flow and Color Conductivity
    J. Petravic
    D. J. Evans
    International Journal of Thermophysics, 1998, 19 : 1049 - 1062
  • [32] PORE FLUID STABILIZATION OF EARTH FAULTING .1. TIME-DEPENDENT ELASTIC SHEAR RESPONSE IN ROCK SURROUNDING FAULT ZONES
    RICE, JR
    RUDNICKI, JW
    SIMONS, DA
    TRANSACTIONS-AMERICAN GEOPHYSICAL UNION, 1977, 58 (06): : 501 - 501
  • [33] Time-dependent response in a multilayered of an axially loaded elastic bar poroelastic medium
    Senjuntichai, T.
    Sornpakdee, N.
    Teerawong, J.
    Rajapakse, R. K. N. D.
    JOURNAL OF ENGINEERING MECHANICS, 2007, 133 (05) : 578 - 587
  • [34] TIME-DEPENDENT RESPONSE THEORY
    EVANS, DJ
    MORRISS, GP
    MOLECULAR PHYSICS, 1988, 64 (03) : 521 - 534
  • [35] A stacked frequency approach for inhomogeneous time-dependent MRE: an inverse problem for the elastic shear modulus
    Davies, Penny J.
    Sack, Ingolf
    IMA JOURNAL OF APPLIED MATHEMATICS, 2021, 86 (01) : 121 - 145
  • [36] Transient shear banding in time-dependent fluids
    Illa, Xavier
    Puisto, Antti
    Lehtinen, Arttu
    Mohtaschemi, Mikael
    Alava, Mikko J.
    PHYSICAL REVIEW E, 2013, 87 (02):
  • [37] Initiation of diffusive layering by time-dependent shear
    Brown, Justin M.
    Radko, Timour
    JOURNAL OF FLUID MECHANICS, 2019, 858 : 588 - 608
  • [38] The Linear Stability of Time-Dependent Baroclinic Shear
    Poulin, F. J.
    JOURNAL OF PHYSICAL OCEANOGRAPHY, 2010, 40 (03) : 568 - 581
  • [39] Time-Dependent Fluid Squeeze-Out Between Soft Elastic Solids with Randomly Rough Surfaces
    Scaraggi, M.
    Persson, B. N. J.
    TRIBOLOGY LETTERS, 2012, 47 (03) : 409 - 416
  • [40] Time-dependent shear velocities in channel routing
    Rowinski, PM
    Czernuszenko, W
    Pretre, JM
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 2000, 45 (06): : 881 - 895