41 mW high average power picosecond 177.3 nm laser by second-harmonic generation in KBBF

被引:27
|
作者
Yang, Feng [1 ,3 ]
Wang, Zhimin [2 ]
Zhou, Yong [1 ,3 ]
Cheng, Xiankun [1 ,3 ]
Xie, Shiyong [1 ,3 ]
Peng, Qinjun [2 ]
Cui, Dafu [2 ]
Zhang, Jingyuan [2 ]
Wang, Xiaoyang
Zhu, Yong
Chen, Chuangtian
Xu, Zuyan [1 ,2 ]
机构
[1] CAS, Inst Phys, Lab Opt Phys, Beijing, Peoples R China
[2] CAS, Tech Inst Phys & Chem, Key Lab Funct Crystal & Laser Technol, RCLPT, Beijing, Peoples R China
[3] Chinese Acad Sci, Grad Sch, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Nonlinear optical crystal; Deep-ultraviolet; KBBF; Second-harmonic generation (SHG); PRISM-COUPLED DEVICE; PHASE-MATCHING CHARACTERISTICS; KBE2BO3F2; CRYSTAL; DEEP-ULTRAVIOLET; HARMONIC-GENERATION; FEMTOSECOND PULSES; LIGHT-SOURCE;
D O I
10.1016/j.optcom.2009.09.051
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report on the generation of high average power, high repetition rate, and picosecond (ps) deep-ultraviolet (DUV) 177.3 nm laser. The DUV laser is produced by second-harmonic generation of a frequency-tripled mode-locked Nd: YVO(4) laser (<15 ps, 80 MHz) with KBBF nonlinear crystal. The influence of different fundamental beam diameters on DUV output power and KBBF-SHG conversion efficiency are investigated. Under the 355 nm pump power of 7.5 W with beam diameter of 145 mu m, 41 mW DUV output at 177.3 nm is obtained. To our knowledge, this is the highest average power for the 177.3 nm laser. Our results provide a power scaling by three times with respect to previous best works. (C) 2009 Elsevier B.V. All rights reserved.
引用
收藏
页码:142 / 145
页数:4
相关论文
共 50 条
  • [41] High temporal contrast 1053 nm laser source based on optical parametric amplification and second-harmonic generation
    Liya Shen
    Yanyan Li
    Wenkai Li
    Jiajun Song
    Junyu Qian
    Jianyu Sun
    Renyu Feng
    Yujie Peng
    Yuxin Leng
    HighPowerLaserScienceandEngineering, 2023, 11 (01) : 5 - 10
  • [42] High temporal contrast 1053 nm laser source based on optical parametric amplification and second-harmonic generation
    Shen, Liya
    Li, Yanyan
    Li, Wenkai
    Song, Jiajun
    Qian, Junyu
    Sun, Jianyu
    Feng, Renyu
    Peng, Yujie
    Leng, Yuxin
    HIGH POWER LASER SCIENCE AND ENGINEERING, 2023, 11
  • [43] High-average power diode-pumped SBR picosecond Nd vanadate laser with harmonic generation
    Robertson, G
    Maker, GT
    Malcolm, GP
    COMMERCIAL AND BIOMEDICAL APPLICATIONS OF ULTRAFAST LASERS II, 2000, 3934 : 2 - 7
  • [44] 15.5 W, pulsed 630 nm generation based on Raman fiber laser and second-harmonic generation
    Lee, Dal Yong
    Kim, Kyungseung
    Lee, Chungman
    Kim, Jongwan
    Yoon, Changjun
    Kim, Jinju
    Jun, Changsu
    OPTICS EXPRESS, 2024, 32 (16): : 28072 - 28081
  • [45] Rotation of a KH2PO4 crystal and its effect on the second-harmonic generation of a high-average-power laser beam
    Su, Ruifeng
    APPLIED OPTICS, 2022, 61 (34) : 10143 - 10149
  • [46] High-average-power (15-W) 255-nm source based on second-harmonic generation of a copper laser master oscillator power amplifier system in cesium lithium borate
    Brown, DJW
    Withford, MJ
    OPTICS LETTERS, 2001, 26 (23) : 1885 - 1887
  • [47] High average power second harmonic generation of femtosecond fiber lasers
    Haedrich, S.
    Rothhardt, J.
    Eidam, T.
    Gottschall, T.
    Limpert, J.
    Tuennermann, A.
    FIBER LASERS VIII: TECHNOLOGY, SYSTEMS, AND APPLICATIONS, 2011, 7914
  • [48] Second-harmonic generation from a picosecond Ti:Sa laser in LBO: conversion efficiency and spatial properties
    P.L. Ramazza
    S. Ducci
    A. Zavatta
    M. Bellini
    F.T. Arecchi
    Applied Physics B, 2002, 75 : 53 - 58
  • [49] Second-harmonic generation from a picosecond Ti:Sa laser in LBO:: conversion efficiency and spatial properties
    Ramazza, PL
    Ducci, S
    Zavatta, A
    Bellini, M
    Arecchi, FT
    APPLIED PHYSICS B-LASERS AND OPTICS, 2002, 75 (01): : 53 - 58
  • [50] SECOND-HARMONIC GENERATION OF LIGHT BY FOCUSED LASER BEAMS
    KLEINMAN, DA
    ASHKIN, A
    BOYD, GD
    IEEE JOURNAL OF QUANTUM ELECTRONICS, 1966, QE 2 (04) : R31 - &