Knowledge Representation in Probabilistic Spatio-Temporal Knowledge Bases

被引:9
|
作者
Parisi, Francesco [1 ]
Grant, John [2 ,3 ]
机构
[1] Univ Calabria, Dept Informat Modeling Elect & Syst Engn, I-87036 Arcavacata Di Rende, Italy
[2] Univ Maryland, Dept Comp Sci, College Pk, MD 20742 USA
[3] Univ Maryland, UMIACS, College Pk, MD 20742 USA
关键词
CONSISTENCY CHECKING; LOGICS; DATABASES; SELECTION; SPACE;
D O I
10.1613/jair.4883
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We represent knowledge as integrity constraints in a formalization of probabilistic spatio-temporal knowledge bases. We start by defining the syntax and semantics of a formalization called PST knowledge bases. This definition generalizes an earlier version, called SPOT, which is a declarative framework for the representation and processing of probabilistic spatio-temporal data where probability is represented as an interval because the exact value is unknown. We augment the previous definition by adding a type of non-atomic formula that expresses integrity constraints. The result is a highly expressive formalism for knowledge representation dealing with probabilistic spatio- temporal data. We obtain complexity results both for checking the consistency of PST knowledge bases and for answering queries in PST knowledge bases, and also specify tractable cases. All the domains in the PST framework are finite, but we extend our results also to arbitrarily large finite domains.
引用
收藏
页码:743 / 798
页数:56
相关论文
共 50 条
  • [31] A Framework of Data Fusion Through Spatio-Temporal Knowledge Graph
    Zhang, Xiaohan
    Zhu, Xinning
    Wu, Jie
    Hu, Zheng
    Zhang, Chunhong
    KNOWLEDGE SCIENCE, ENGINEERING AND MANAGEMENT, PT I, 2021, 12815 : 216 - 228
  • [32] Spatio-temporal modeling for knowledge discovery in satellite image databases
    Boulila, Wadii
    Farah, Imed Riadh
    Ettabaa, Karim Saheb
    Solaiman, Basel
    Ghézala, Henda Ben
    CORIA 2010: Actes de la COnference en Recherche d'Information et Applications - Proceedings of the Conference on Information Retrieval and Applications, 2010, : 35 - 49
  • [33] Spatio-Temporal Urban Knowledge Graph Enabled Mobility Prediction
    Wang, Huandong
    Yu, Qiaohong
    Liu, Yu
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE ACM ON INTERACTIVE MOBILE WEARABLE AND UBIQUITOUS TECHNOLOGIES-IMWUT, 2021, 5 (04):
  • [34] Spatio-Temporal Aware Knowledge Graph Embedding for Recommender Systems
    Yang, Liu
    Yin, Xin
    Long, Jun
    Chen, Tingxuan
    Zhao, Jie
    Huang, Wenti
    2022 IEEE INTL CONF ON PARALLEL & DISTRIBUTED PROCESSING WITH APPLICATIONS, BIG DATA & CLOUD COMPUTING, SUSTAINABLE COMPUTING & COMMUNICATIONS, SOCIAL COMPUTING & NETWORKING, ISPA/BDCLOUD/SOCIALCOM/SUSTAINCOM, 2022, : 896 - 902
  • [35] Knowledge Representation-Actuated Based Spatio-Temporal Graph Neural Network Traffic Flow Prediction
    Liu, Yihan
    Ning, Nianwen
    Lu, Ning
    Zhou, Yi
    IEEE CONFERENCE ON GLOBAL COMMUNICATIONS, GLOBECOM, 2023, : 4528 - 4533
  • [36] A model of fuzzy spatio-temporal knowledge representation and reasoning based on high-level Petri nets
    Ribaric, Slobodan
    Hrkac, Tomislav
    INFORMATION SYSTEMS, 2012, 37 (03) : 238 - 256
  • [37] Probabilistic spatio-temporal resource search
    Qing Guo
    Ouri Wolfson
    GeoInformatica, 2018, 22 : 75 - 103
  • [38] Probabilistic spatio-temporal resource search
    Guo, Qing
    Wolfson, Ouri
    GEOINFORMATICA, 2018, 22 (01) : 75 - 103
  • [39] A Spatio-Temporal Linked Data Representation for Modeling Spatio-Temporal Dialect Data
    Scholz, Johannes
    Hrastnig, Emanual
    Wandl-Vogt, Eveline
    PROCEEDINGS OF WORKSHOPS AND POSTERS AT THE 13TH INTERNATIONAL CONFERENCE ON SPATIAL INFORMATION THEORY (COSIT 2017), 2018, : 275 - 282
  • [40] Knowledge bases and agents for domain knowledge representation
    Chouvet, MP
    LeBer, F
    EIGHTH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 1996, : 224 - 227