Cauchy problem for viscous rotating shallow water equations

被引:16
|
作者
Hao, Chengchun [1 ,2 ]
Hsiao, Ling [1 ]
Li, Hai-Liang [3 ]
机构
[1] Chinese Acad Sci, Inst Math, Acad Math & Syst Sci, Beijing 100190, Peoples R China
[2] Chinese Acad Sci, Hua Loo Keng Key Lab Math, Beijing 100190, Peoples R China
[3] Capital Normal Univ, Dept Math, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
Viscous compressible rotating shallow water system; Cauchy problem; Global well-posedness; Besov spaces; NAVIER-STOKES EQUATIONS; GLOBAL EXISTENCE; DERIVATION; MODEL;
D O I
10.1016/j.jde.2009.09.008
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider the Cauchy problem for a viscous compressible rotating shallow water system with a third-order surface-tension term involved, derived recently in the modeling of motions for shallow water with free surface in a rotating sub-domain Marche (2007) [19]. The global. existence of the solution in the space of Besov type is shown for initial data close to a constant equilibrium state away from the vacuum. Unlike the previous analysis about the compressible fluid model without Coriolis forces, see for instance Danchin (2000) [10], Haspot (2009) [16], the rotating effect causes a coupling between two parts of Hodge's decomposition of the velocity vector field, and additional regularity is required in order to carry out the Friedrichs' regularization and compactness arguments. (C) 2009 Elsevier Inc. All rights reserved.
引用
收藏
页码:3234 / 3257
页数:24
相关论文
共 50 条
  • [31] CAUCHY-PROBLEM FOR WAVES ON SHALLOW-WATER
    BIKBAEV, RF
    THEORETICAL AND MATHEMATICAL PHYSICS, 1991, 86 (03) : 327 - 330
  • [32] On the Cauchy problem for the generalized shallow water wave equation
    Tian, Lixin
    Gui, Guilong
    Liu, Yue
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2008, 245 (07) : 1838 - 1852
  • [33] The Cauchy problem of a weakly dissipative shallow water equation
    Ming, Sen
    Lai, Shaoyong
    Su, Yeqin
    APPLICABLE ANALYSIS, 2019, 98 (08) : 1387 - 1402
  • [34] The Cauchy problem for the fifth order shallow water equation
    Huo Z.-H.
    Acta Mathematicae Applicatae Sinica, 2005, 21 (3) : 441 - 454
  • [35] ON THE WELL-POSEDNESS FOR THE VISCOUS SHALLOW WATER EQUATIONS
    Chen, Qionglei
    Miao, Changxing
    Zhang, Zhifei
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2008, 40 (02) : 443 - 474
  • [36] Shallow water equations: viscous solutions and inviscid limit
    Gui-Qiang Chen
    Mikhail Perepelitsa
    Zeitschrift für angewandte Mathematik und Physik, 2012, 63 : 1067 - 1084
  • [37] Shallow water equations: viscous solutions and inviscid limit
    Chen, Gui-Qiang
    Perepelitsa, Mikhail
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2012, 63 (06): : 1067 - 1084
  • [38] Cauchy problem for quasi-linear wave equations with viscous damping
    Zhijian, Yang
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 859 - 881
  • [39] Rate of convergence from the rotating Euler and shallow water equations to the rotating lake equations
    Peng Cheng
    Jianwei Yang
    Dan Bai
    Boundary Value Problems, 2017
  • [40] Rate of convergence from the rotating Euler and shallow water equations to the rotating lake equations
    Cheng, Peng
    Yang, Jianwei
    Bai, Dan
    BOUNDARY VALUE PROBLEMS, 2017,