Serf-consistent effective-medium approximations with path integrals

被引:6
|
作者
Pellegrini, YP
Barthélémy, M
机构
[1] Commissariat Energie Atom, Serv Phys Mat Condensee, F-91680 Bruyeres Le Chatel, France
[2] Boston Univ, Ctr Polymer Studies, Boston, MA 02215 USA
[3] Boston Univ, Dept Phys, Boston, MA 02215 USA
关键词
D O I
10.1103/PhysRevE.61.3547
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We study effective-medium approximations for linear composite media by means of a path integral formalism with replicas. We show how to recover the Bruggeman and Hori-Yonezawa effective-medium formulas. Using a replica-coupling ansatz, these formulas are extended into ones which have the same percolation thresholds as those of the Bethe lattice and Potts model of percolation, and critical exponents s = 0 and t = 2 in any space dimension d greater than or equal to 2. Like the Bruggeman and Hori-Yonezawa formulas, the obtained formulas are exact to second order in the weak-contrast and dilute limits. The dimensional range of validity of the four effective-medium formulas is discussed, and it is argued that out formulas are of better relevance than the classical ones in dimensions d = 3,4 for systems obeying the nodes-links-blobs picture, such as random-resistor networks.
引用
收藏
页码:3547 / 3558
页数:12
相关论文
共 50 条
  • [21] Effective-medium properties of metamaterials: A quasimode theory
    Sun, Shulin
    Chui, S. T.
    Zhou, Lei
    PHYSICAL REVIEW E, 2009, 79 (06)
  • [22] FROM THE HUCKEL MODEL TO EFFECTIVE-MEDIUM THEORY
    HAKKINEN, H
    MANSIKKAAHO, J
    MANNINEN, M
    JOURNAL OF PHYSICS-CONDENSED MATTER, 1991, 3 (40) : 7757 - 7762
  • [23] EFFECTIVE-MEDIUM APPROXIMATION FOR DIFFUSION ON A RANDOM LATTICE
    WEBMAN, I
    PHYSICAL REVIEW LETTERS, 1981, 47 (21) : 1496 - 1499
  • [24] Effective-medium description of disordered photonic alloys
    Yannopapas, Vassilios
    JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2006, 23 (07) : 1414 - 1419
  • [25] EFFECTIVE-MEDIUM THEORY FOR WEAKLY NONLINEAR COMPOSITES
    ZENG, XC
    BERGMAN, DJ
    HUI, PM
    STROUD, D
    PHYSICAL REVIEW B, 1988, 38 (15) : 10970 - 10973
  • [26] APPLICATION OF EFFECTIVE-MEDIUM THEORY TO INVERSION LAYERS
    ADKINS, CJ
    JOURNAL OF PHYSICS C-SOLID STATE PHYSICS, 1979, 12 (16): : 3395 - 3400
  • [27] APPLICATIONS OF THE EFFECTIVE-MEDIUM APPROXIMATION TO CUBIC GEOMETRIES
    KOSS, RS
    STROUD, D
    PHYSICAL REVIEW B, 1985, 32 (06): : 3456 - 3461
  • [28] EFFECTIVE-MEDIUM AT FINITE FREQUENCY - THEORY AND EXPERIMENT
    ROUSSELLE, D
    BERTHAULT, A
    ACHER, O
    BOUCHAUD, JP
    ZERAH, PG
    JOURNAL OF APPLIED PHYSICS, 1993, 74 (01) : 475 - 479
  • [29] EFFECTIVE-MEDIUM DESCRIPTION OF SUPERLATTICES AND THE EFFECT ON NONLOCALITY
    HUNDERI, O
    JOHANNESSEN, K
    SUPERLATTICES AND MICROSTRUCTURES, 1987, 3 (02) : 193 - 198
  • [30] Semiphenomenological effective-medium theory of multicomponent nucleation
    Kalikmanov, VI
    vanDongen, MEH
    PHYSICAL REVIEW E, 1997, 55 (02): : 1607 - 1616