Unifying the analyses of anatomical and diffusion tensor images using volume-preserved warping

被引:13
|
作者
Xu, Dongrong
Hao, Xuejun
Bansal, Ravi
Plessen, Kerstin J.
Geng, Weidong
Hugdahl, Kenneth
Peterson, Bradley S.
机构
[1] NYSPI, New York, NY 10032 USA
[2] Columbia Univ, MRI Unit, Coll Phys & Surg, Med Ctr, New York, NY USA
[3] Univ Bergen, Ctr Child & Adolescent Mental Hlth, Bergen, Norway
[4] Univ Bergen, Dept Biol & Med Psychol, Bergen, Norway
[5] Zhejiang Univ, State Key Lab CAD & CG, Zhejiang, Peoples R China
关键词
diffusion tensor imaging; anatomical imaging; multimodal imaging data analysis; volume-preserved warping; fiber tracking; fiber clustering and comparison;
D O I
10.1002/jmri.20858
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Purpose: To introduce a framework that automatically identifies regions of anatomical abnormality within anatomical MR images and uses those regions in hypothesis-driven selection of seed points for fiber tracking with diffusion tensor (DT) imaging (DTI). Materials and Methods: Regions of interest (ROIs) are first extracted from MR images using an automated algorithm for volume-preserved warping (VPW) that identifies localized volumetric differences across groups. ROIs then serve as seed points for fiber tracking in coregistered DT images. Another algorithm automatically clusters and compares morphologies of detected fiber bundles. We tested our framework using datasets from a group of patients with Tourette's syndrome (TS) and normal controls. Results: Our framework automatically identified regions of localized volumetric differences across groups and then used those regions as seed points for fiber tracking. In our applied example, a comparison of fiber tracts in the two diagnostic groups showed that most fiber tracts failed to correspond across groups, suggesting that anatomical connectivity was severely disrupted in fiber bundles leading from regions of known anatomical abnormality. Conclusion: Our framework automatically detects volumetric abnormalities in anatomical MRIs to aid in generating a priori hypotheses concerning anatomical connectivity that then can be tested using DTI. Additionally, automation enhances the reliability of ROIs, fiber tracking, and fiber clustering.
引用
收藏
页码:612 / 624
页数:13
相关论文
共 50 条
  • [1] Measuring variability of local brain volume using improved volume preserved warping
    Li, Xuzhou
    Huang, Manli
    Hao, Xuejun
    Zhao, Zhiyong
    Xu, Dongrong
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2022, 96
  • [2] Volume Illustration of Muscle from Diffusion Tensor Images
    Chen, Wei
    Yan, Zhicheng
    Zhang, Song
    Crow, John Allen
    Ebert, David S.
    McLaughlin, Ronald M.
    Mullins, Katie B.
    Cooper, Robert
    Ding, Zi'ang
    Liao, Jun
    [J]. IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, 2009, 15 (06) : 1425 - 1432
  • [3] Improvement of Partial Volume Segmentation for Brain Tissue on Diffusion Tensor Images Using Multiple-Tensor Estimation
    Seiji Kumazawa
    Takashi Yoshiura
    Hiroshi Honda
    Fukai Toyofuku
    [J]. Journal of Digital Imaging, 2013, 26 : 1131 - 1140
  • [4] Improvement of Partial Volume Segmentation for Brain Tissue on Diffusion Tensor Images Using Multiple-Tensor Estimation
    Kumazawa, Seiji
    Yoshiura, Takashi
    Honda, Hiroshi
    Toyofuku, Fukai
    [J]. JOURNAL OF DIGITAL IMAGING, 2013, 26 (06) : 1131 - 1140
  • [5] FINGERPRINT IMAGES ENHANCEMENT USING DIFFUSION TENSOR
    Romdhane, Feriel
    Benzarti, Faouzi
    Amiri, Hamid
    [J]. 2013 INTERNATIONAL CONFERENCE ON ELECTRICAL ENGINEERING AND SOFTWARE APPLICATIONS (ICEESA), 2013, : 612 - 617
  • [6] Matching of diffusion tensor images using gabor features
    Verma, R
    Davatzikos, C
    [J]. 2004 2ND IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1 AND 2, 2004, : 396 - 399
  • [7] Repairing and inpainting damaged images using diffusion tensor
    Signal, Image Processing and Pattern Recognition Laboratory, TSIRF , Tunisia
    [J]. Int. J. Comput. Sci. Issues, 4 4-3 (150-156):
  • [8] Manifold based analysis of diffusion tensor images using Isomaps
    Verma, Ragini
    Davatzikos, Christos
    [J]. 2006 3RD IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING: MACRO TO NANO, VOLS 1-3, 2006, : 790 - +
  • [9] Reduction of noise in diffusion tensor images using anisotropic smoothing
    Ding, ZH
    Gore, JC
    Anderson, AW
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2005, 53 (02) : 485 - 490
  • [10] Fluid registration of diffusion tensor images using information theory
    Chiang, Ming-Chang
    Leow, Alex D.
    Klunder, Andrea D.
    Dutton, Rebecca A.
    Barysheva, Marina
    Rose, Stephen E.
    McMahon, Katie L.
    de Zubicaray, Greig I.
    Toga, Arthur W.
    Thompson, Paul M.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2008, 27 (04) : 442 - 456