X-ray Thomson scattering in high energy density plasmas

被引:602
|
作者
Glenzer, Siegfried H. [1 ]
Redmer, Ronald [2 ]
机构
[1] Lawrence Livermore Natl Lab, Livermore, CA 94551 USA
[2] Univ Rostock, Inst Phys, D-18051 Rostock, Germany
关键词
Compton effect; dielectric function; plasma density; plasma inertial confinement; plasma oscillations; plasma probes; plasma temperature; plasmons; spectral line breadth; X-ray scattering; EQUATION-OF-STATE; LINDHARD DIELECTRIC FUNCTION; NATIONAL-IGNITION-FACILITY; CONVERSION EFFICIENCY; EXTREME-ULTRAVIOLET; GRAZING-INCIDENCE; K-ALPHA; ELECTRICAL-CONDUCTIVITY; COLLECTIVE DESCRIPTION; COMPTON-SCATTERING;
D O I
10.1103/RevModPhys.81.1625
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Accurate x-ray scattering techniques to measure the physical properties of dense plasmas have been developed for applications in high energy density physics. This class of experiments produces short-lived hot dense states of matter with electron densities in the range of solid density and higher where powerful penetrating x-ray sources have become available for probing. Experiments have employed laser-based x-ray sources that provide sufficient photon numbers in narrow bandwidth spectral lines, allowing spectrally resolved x-ray scattering measurements from these plasmas. The backscattering spectrum accesses the noncollective Compton scattering regime which provides accurate diagnostic information on the temperature, density, and ionization state. The forward scattering spectrum has been shown to measure the collective plasmon oscillations. Besides extracting the standard plasma parameters, density and temperature, forward scattering yields new observables such as a direct measure of collisions and quantum effects. Dense matter theory relates scattering spectra with the dielectric function and structure factors that determine the physical properties of matter. Applications to radiation-heated and shock-compressed matter have demonstrated accurate measurements of compression and heating with up to picosecond temporal resolution. The ongoing development of suitable x-ray sources and facilities will enable experiments in a wide range of research areas including inertial confinement fusion, radiation hydrodynamics, material science, or laboratory astrophysics.
引用
收藏
页码:1625 / 1663
页数:39
相关论文
共 50 条
  • [21] X-ray Thomson scattering for partially ionized plasmas including the effect of bound levels
    Nilsen, Joseph
    Johnson, Walter R.
    Cheng, K. T.
    X-RAY LASERS AND COHERENT X-RAY SOURCES: DEVELOPMENT AND APPLICATIONS X, 2013, 8849
  • [22] Thomson scattering from near-solid density plasmas using soft X-ray free electron lasers
    Hoell, A.
    Bornath, Th.
    Cao, L.
    Doeppner, T.
    Duesterer, S.
    Foerster, E.
    Fortmann, C.
    Glenzer, S. H.
    Gregori, G.
    Laarmann, T.
    Meiwes-Broer, K-H
    Przystawik, A.
    Radcliffe, P.
    Redmer, R.
    Reinholz, H.
    Roepke, G.
    Thiele, R.
    Tiggesbaeumker, J.
    Toleikis, S.
    Truong, N. X.
    Tschentscher, T.
    Uschmann, I.
    Zastrau, U.
    HIGH ENERGY DENSITY PHYSICS, 2007, 3 (1-2) : 120 - 130
  • [23] A high-resolution imaging x-ray crystal spectrometer for high energy density plasmas
    Chen, Hui
    Bitter, M.
    Hill, K. W.
    Kerr, S.
    Magee, E.
    Nagel, S. R.
    Park, J.
    Schneider, M. B.
    Stone, G.
    Williams, G. J.
    Beiersdorfer, P.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2014, 85 (11):
  • [24] Tsinghua Thomson scattering X-ray source
    Tang, Chuanxiang
    Huang, Wenhui
    Li, Renkai
    Du, Yingchao
    Yan, Lixin
    Shi, Jiaru
    Du, Qiang
    Yu, Peicheng
    Chen, Huaibi
    Du, Taibin
    Cheng, Cheng
    Lin, Yuzheng
    NUCLEAR INSTRUMENTS & METHODS IN PHYSICS RESEARCH SECTION A-ACCELERATORS SPECTROMETERS DETECTORS AND ASSOCIATED EQUIPMENT, 2009, 608 (01): : S70 - S74
  • [25] X-ray Thomson scattering on shocked graphite
    Kraus, D.
    Otten, A.
    Frank, A.
    Bagnoud, V.
    Blazevic, A.
    Gericke, D. O.
    Gregori, G.
    Ortner, A.
    Schaumann, G.
    Schumacher, D.
    Vorberger, J.
    Wagner, F.
    Wuensch, K.
    Roth, M.
    HIGH ENERGY DENSITY PHYSICS, 2012, 8 (01) : 46 - 49
  • [26] X-RAY SPECTROSCOPY OF HIGH-ENERGY DENSITY INERTIAL CONFINEMENT FUSION PLASMAS
    KEANE, CJ
    HAMMEL, BA
    KANIA, DR
    KILKENNY, JD
    LEE, RW
    OSTERHELD, AL
    SUTER, LJ
    MANCINI, RC
    HOOPER, CF
    DELAMATER, ND
    PHYSICS OF FLUIDS B-PLASMA PHYSICS, 1993, 5 (09): : 3328 - 3336
  • [27] Electron-ion collision-frequency for x-ray Thomson scattering in dense plasmas
    Faussurier, Gerald
    Blancard, Christophe
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [28] Measurement of high-dynamic range x-ray Thomson scattering spectra for the characterization of nano-plasmas at LCLS
    MacDonald, M. J.
    Gorkhover, T.
    Bachmann, B.
    Bucher, M.
    Carron, S.
    Coffee, R. N.
    Drake, R. P.
    Ferguson, K. R.
    Fletcher, L. B.
    Gamboa, E. J.
    Glenzer, S. H.
    Gode, S.
    Hau-Riege, S. P.
    Kraus, D.
    Krzywinski, J.
    Levitan, A. L.
    Meiwes-Broer, K. -H.
    O'Grady, C. P.
    Osipov, T.
    Pardini, T.
    Peltz, C.
    Skruszewicz, S.
    Swiggers, M.
    Bostedt, C.
    Fennel, T.
    Doppner, T.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2016, 87 (11):
  • [29] Probing high density plasmas with soft X-ray lasers
    Celliers, P
    Barbee, TW
    Cauble, R
    Da Silva, LB
    Decker, CD
    Kalantar, DH
    Key, MH
    London, RA
    Moreno, JC
    Snavely, R
    Trebes, JE
    Wan, AS
    Weber, F
    SOFT X-RAY LASERS AND APPLICATIONS II, 1997, 3156 : 135 - 145
  • [30] HIGH-DENSITY PLASMAS FOR RECOMBINATION X-RAY LASERS
    SMITH, RA
    BARROW, V
    EDWARDS, J
    KIEHN, G
    WILLI, O
    APPLIED PHYSICS B-PHOTOPHYSICS AND LASER CHEMISTRY, 1990, 50 (03): : 187 - 192