A forecasting model for wave heights based on a long short-term memory neural network

被引:29
|
作者
Gao, Song [1 ,2 ]
Huang, Juan [1 ,2 ]
Li, Yaru [1 ,2 ]
Liu, Guiyan [1 ,2 ]
Bi, Fan [1 ,2 ]
Bai, Zhipeng [3 ]
机构
[1] State Ocean Adm, North China Sea Marine Forecasting Ctr, Qingdao 266061, Peoples R China
[2] Shandong Prov Key Lab Marine Ecol Environm & Disa, Qingdao 266061, Peoples R China
[3] Mailbox 5111, Beijing 100094, Peoples R China
基金
国家重点研发计划;
关键词
long short-term memory; marine forecast; neural network; significant wave height; DECOMPOSITION; PREDICTION;
D O I
10.1007/s13131-020-1680-3
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
To explore new operational forecasting methods of waves, a forecasting model for wave heights at three stations in the Bohai Sea has been developed. This model is based on long short-term memory (LSTM) neural network with sea surface wind and wave heights as training samples. The prediction performance of the model is evaluated, and the error analysis shows that when using the same set of numerically predicted sea surface wind as input, the prediction error produced by the proposed LSTM model at Sta. N01 is 20%, 18% and 23% lower than the conventional numerical wave models in terms of the total root mean square error (RMSE), scatter index (SI) and mean absolute error (MAE), respectively. Particularly, for significant wave height in the range of 3-5 m, the prediction accuracy of the LSTM model is improved the most remarkably, with RMSE, SI and MAE all decreasing by 24%. It is also evident that the numbers of hidden neurons, the numbers of buoys used and the time length of training samples all have impact on the prediction accuracy. However, the prediction does not necessary improve with the increase of number of hidden neurons or number of buoys used. The experiment trained by data with the longest time length is found to perform the best overall compared to other experiments with a shorter time length for training. Overall, long short-term memory neural network was proved to be a very promising method for future development and applications in wave forecasting.
引用
收藏
页码:62 / 69
页数:8
相关论文
共 50 条
  • [41] Warehouse Demand Forecasting based on Long Short-Term Memory neural networks
    Hodzic, Kerim
    Hasic, Haris
    Cogo, Emir
    Juric, Zeljko
    [J]. 2019 XXVII INTERNATIONAL CONFERENCE ON INFORMATION, COMMUNICATION AND AUTOMATION TECHNOLOGIES (ICAT 2019), 2019,
  • [42] The neural network model based on PSO for short-term load forecasting
    Sun, Wei
    Zhang, Ying-Xia
    Li, Fang-Tao
    [J]. PROCEEDINGS OF 2006 INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND CYBERNETICS, VOLS 1-7, 2006, : 3069 - +
  • [43] Short-Term Load Forecasting Model Based on Deep Neural Network
    Xue Hui
    Wang Qun
    Li Yao
    Zhang Yingbin
    Shi Lei
    Zhang Zhisheng
    [J]. PROCEEDINGS OF 2017 2ND INTERNATIONAL CONFERENCE ON POWER AND RENEWABLE ENERGY (ICPRE), 2017, : 589 - 591
  • [44] Transfer Learning for Photovoltaic Power Forecasting with Long Short-Term Memory Neural Network
    Zhou, Siyu
    Zhou, Lin
    Mao, Mingxuan
    Xi, Xinze
    [J]. 2020 IEEE INTERNATIONAL CONFERENCE ON BIG DATA AND SMART COMPUTING (BIGCOMP 2020), 2020, : 125 - 132
  • [45] Deep Neural Network and Long Short-Term Memory for Electric Power Load Forecasting
    Son, Namrye
    Yang, Seunghak
    Na, Jeongseung
    [J]. APPLIED SCIENCES-BASEL, 2020, 10 (18):
  • [46] A Multivariate Long Short-Term Memory Neural Network for Coalbed Methane Production Forecasting
    Xu, Xijie
    Rui, Xiaoping
    Fan, Yonglei
    Yu, Tian
    Ju, Yiwen
    [J]. SYMMETRY-BASEL, 2020, 12 (12): : 1 - 15
  • [47] Forecasting of the Stock Price Using Recurrent Neural Network - Long Short-term Memory
    Dobrovolny, Michal
    Soukal, Ivan
    Salamat, Ali
    Cierniak-Emerych, Anna
    Krejcar, Ondrej
    [J]. HRADEC ECONOMIC DAYS, VOL 11(1), 2021, 11 : 145 - 154
  • [48] Forecasting cryptocurrency prices using Recurrent Neural Network and Long Short-term Memory
    Nasirtafreshi, I.
    [J]. DATA & KNOWLEDGE ENGINEERING, 2022, 139
  • [49] PowerLSTM: Power Demand Forecasting Using Long Short-Term Memory Neural Network
    Cheng, Yao
    Xu, Chang
    Mashima, Daisuke
    Thing, Vrizlynn L. L.
    Wu, Yongdong
    [J]. ADVANCED DATA MINING AND APPLICATIONS, ADMA 2017, 2017, 10604 : 727 - 740
  • [50] Hybrid Long Short-Term Memory Fused Convolution Neural Network for Weather Forecasting
    Myilvahanan, J. Karthick
    Sundaram, N. Mohana
    Santhosh, R.
    [J]. INTERNATIONAL JOURNAL OF COMPUTATIONAL METHODS, 2024,