On solutions for a class of Kirchhoff systems involving critical growth in R2

被引:3
|
作者
de Albuquerque, J. C. [1 ]
do O, J. M. [2 ]
dos Santos, E. O. [1 ]
Severo, U. B. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Kirchhoff systems; exponential critical growth; Trudinger-Moser inequality; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; ELLIPTIC EQUATION; CRITICAL EXPONENT; EXISTENCE;
D O I
10.3233/ASY-201610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the existence of solutions for the following class of elliptic systems involving Kirchhoff equations in the plane: {m(parallel to u parallel to(2))[-Delta u + u] =lambda f(u, v), x is an element of R-2, l parallel to v parallel to(2))[-Delta v + v] = lambda g(u, v), x is an element of R-2, where lambda > 0 is a parameter, m, l : [0,+infinity) -> [0,+infinity) are Kirchhoff-type functions, parallel to center dot parallel to denotes the usual norm of the Sobolev space H1(R2) and the nonlinear terms f and g have exponential critical growth of Trudinger-Moser type. Moreover, when f and g are odd functions, we prove that the number of solutions increases when the parameter lambda becomes large.
引用
收藏
页码:69 / 85
页数:17
相关论文
共 50 条
  • [11] On multiplicity and concentration for a magnetic Kirchhoff-Schrodinger equation involving critical exponents in R2
    Lin, Xiaolu
    Zheng, Shenzhou
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2024, 75 (03):
  • [12] EXISTENCE AND CONCENTRATION OF GROUND STATE SOLUTIONS FOR A CRITICAL KIRCHHOFF TYPE EQUATION IN R2
    Chen, Jing
    Li, Yiqing
    [J]. DIFFERENTIAL AND INTEGRAL EQUATIONS, 2022, 35 (7-8) : 451 - 472
  • [13] Normalized solutions to the Kirchhoff equation with L2-subcritical or critical nonlinearities in R2
    Hu, Jiaqing
    Mao, Anmin
    [J]. INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02): : 508 - 512
  • [14] Normalized ground state solutions for the Schrodinger systems with critical exponential growth in R2
    Chen, Jing
    Xie, Zheng
    Zhang, Xinghua
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 540 (01)
  • [15] Ground State Solutions for a Nonlocal Equation in R2 Involving Vanishing Potentials and Exponential Critical Growth
    Albuquerque, Francisco S. B.
    Ferreira, Marcelo C.
    Severo, Uberlandio B.
    [J]. MILAN JOURNAL OF MATHEMATICS, 2021, 89 (02) : 263 - 294
  • [16] On a nonhomogeneous and singular quasilinear equation involving critical growth in R2
    de Souza, Manasses
    Severo, Uberlandio B.
    Vieira, Gilberto F.
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2017, 74 (03) : 513 - 531
  • [17] MULTIPLE SOLUTIONS OF SYSTEMS INVOLVING FRACTIONAL KIRCHHOFF-TYPE EQUATIONS WITH CRITICAL GROWTH
    Costa, Augusto C. R.
    Maia, Braulio B., V
    [J]. DIFFERENTIAL EQUATIONS & APPLICATIONS, 2020, 12 (02): : 165 - 184
  • [18] On general Kirchhoff type equations with steep potential well and critical growth in R2
    Lou, Zhenluo
    Zhang, Jian
    [J]. AIMS MATHEMATICS, 2024, 9 (08): : 21433 - 21454
  • [19] Positive ground state of coupled systems of Schrodinger equations in R2 involving critical exponential growth
    do O, Joao Marcos
    de Albuquerque, Jose Carlos
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (18) : 6864 - 6879
  • [20] Hamiltonian systems involving exponential growth in R2 with general nonlinearities
    Severo, Uberlandio B.
    de Souza, Manasses
    Menezes, Marta
    [J]. REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2024, 118 (01)