On solutions for a class of Kirchhoff systems involving critical growth in R2

被引:3
|
作者
de Albuquerque, J. C. [1 ]
do O, J. M. [2 ]
dos Santos, E. O. [1 ]
Severo, U. B. [2 ]
机构
[1] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[2] Univ Fed Paraiba, Dept Matemat, BR-58051900 Joao Pessoa, Paraiba, Brazil
关键词
Kirchhoff systems; exponential critical growth; Trudinger-Moser inequality; MULTIPLE SOLUTIONS; POSITIVE SOLUTIONS; ELLIPTIC EQUATION; CRITICAL EXPONENT; EXISTENCE;
D O I
10.3233/ASY-201610
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work we study the existence of solutions for the following class of elliptic systems involving Kirchhoff equations in the plane: {m(parallel to u parallel to(2))[-Delta u + u] =lambda f(u, v), x is an element of R-2, l parallel to v parallel to(2))[-Delta v + v] = lambda g(u, v), x is an element of R-2, where lambda > 0 is a parameter, m, l : [0,+infinity) -> [0,+infinity) are Kirchhoff-type functions, parallel to center dot parallel to denotes the usual norm of the Sobolev space H1(R2) and the nonlinear terms f and g have exponential critical growth of Trudinger-Moser type. Moreover, when f and g are odd functions, we prove that the number of solutions increases when the parameter lambda becomes large.
引用
收藏
页码:69 / 85
页数:17
相关论文
共 50 条