Structure of human RNA polymerase III elongation complex

被引:26
|
作者
Li, Liang [1 ,2 ]
Yu, Zishuo [1 ,2 ]
Zhao, Dan [1 ,2 ]
Ren, Yulei [1 ,2 ]
Hou, Haifeng [1 ,2 ]
Xu, Yanhui [1 ,2 ,3 ,4 ,5 ]
机构
[1] Fudan Univ, Shanghai Canc Ctr, Inst Biomed Sci, State Key Lab Genet Engn, Shanghai 200032, Peoples R China
[2] Fudan Univ, Shanghai Med Coll, Shanghai Key Lab Med Epigenet, Shanghai 200032, Peoples R China
[3] Fudan Univ, Minist Sci & Technol China, Int Colab Med Epigenet & Metab, Dept Syst Biol Med,Sch Basic Med Sci,Shanghai Med, Shanghai 200032, Peoples R China
[4] Fudan Univ, Human Phenome Inst, Sch Life Sci, Collaborat Innovat Ctr Genet & Dev, Shanghai 200433, Peoples R China
[5] Inner Mongolia Univ, Sch Life Sci, State Key Lab Reprod Regulat & Breeding Grassland, Hohhot 010070, Inner Mongolia, Peoples R China
基金
中国国家自然科学基金; 国家重点研发计划;
关键词
TRANSCRIPTION TERMINATION; MOLECULAR-STRUCTURES; CLEAVAGE ACTIVITY; MUTATIONS; REPRESSION; SUBUNITS; VISUALIZATION; SUBCOMPLEX; PREDICTION; MECHANISM;
D O I
10.1038/s41422-021-00472-2
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
RNA polymerase III (Pol III) transcribes essential structured small RNAs, such as tRNAs, 5S rRNA and U6 snRNA. The transcriptional activity of Pol III is tightly controlled and its dysregulation is associated with human diseases, such as cancer. Human Pol III has two isoforms with difference only in one of its subunits RPC7 (alpha and beta). Despite structural studies of yeast Pol III, structure of human Pol III remains unsolved. Here, we determined the structures of 17-subunit human Pol III alpha complex in the backtracked and post-translocation states, respectively. Human Pol III contains a generally conserved catalytic core, similar to that of yeast counterpart, and structurally unique RPC3-RPC6-RPC7 heterotrimer and RPC10. The N-ribbon of TFIIS-like RPC10 docks on the RPC4-RPC5 heterodimer and the C-ribbon inserts into the funnel of Pol III in the backtracked state but is more flexible in the post-translocation state. RPC7 threads through the heterotrimer and bridges the stalk and Pol III core module. The winged helix 1 domain of RPC6 and the N-terminal region of RPC7 alpha stabilize each other and may prevent Maf1-mediated repression of Pol III activity. The C-terminal FeS cluster of RPC6 coordinates a network of interactions that mediate core-heterotrimer contacts and stabilize Pol III. Our structural analysis sheds new light on the molecular mechanism of human Pol III alpha-specific transcriptional regulation and provides explanations for upregulated Pol III activity in RPC7 alpha-dominant cancer cells.
引用
收藏
页码:791 / 800
页数:10
相关论文
共 50 条
  • [21] Complete RNA polymerase II elongation complex structure and its interactions with NTP and TFIIS
    Kettenberger, H
    Armache, KJ
    Cramer, P
    MOLECULAR CELL, 2004, 16 (06) : 955 - 965
  • [22] RNA polymerase and transcription elongation factor Spt4/5 complex structure
    Klein, Brianna J.
    Bose, Daniel
    Baker, Kevin J.
    Yusoff, Zahirah M.
    Zhang, Xiaodong
    Murakami, Katsuhiko S.
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (02) : 546 - 550
  • [23] Elongation factor SII contacts the 3'-end of RNA in the RNA polymerase II elongation complex
    Powell, W
    Bartholomew, B
    Reines, D
    JOURNAL OF BIOLOGICAL CHEMISTRY, 1996, 271 (37) : 22301 - 22304
  • [24] Structure of the SNAPc-bound RNA polymerase III preinitiation complex
    Hou, Haifeng
    Jin, Qianwei
    Ren, Yulei
    Chen, Zhenguo
    Wang, Qianmin
    Xu, Yanhui
    CELL RESEARCH, 2023, 33 (07) : 565 - 568
  • [25] Structure of the SNAPc-bound RNA polymerase III preinitiation complex
    Haifeng Hou
    Qianwei Jin
    Yulei Ren
    Zhenguo Chen
    Qianmin Wang
    Yanhui Xu
    Cell Research, 2023, 33 : 565 - 568
  • [26] Conformational flexibility of RNA polymerase III during transcriptional elongation
    Fernandez-Tornero, Carlos
    Boettcher, Bettina
    Rashid, Umar Jan
    Steuerwald, Ulrich
    Floerchinger, Beate
    Devos, Damien P.
    Lindner, Doris
    Mueller, Christoph W.
    EMBO JOURNAL, 2010, 29 (22): : 3762 - 3772
  • [27] Human Polymerase-Associated Factor complex (PAFc) connects the Super Elongation Complex (SEC) to RNA polymerase II on chromatin
    He, Nanhai
    Chan, Caleb K.
    Sobhian, Bijan
    Chou, Seemay
    Xue, Yuhua
    Liu, Min
    Alber, Tom
    Benkirane, Monsef
    Zhou, Qiang
    PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2011, 108 (36) : E636 - E645
  • [28] In vitro analysis of RNA polymerase II elongation complex dynamics
    Joo, Yoo Jin
    Ficarro, Scott B.
    Chun, Yujin
    Marto, Jarrod A.
    Buratowski, Stephen
    GENES & DEVELOPMENT, 2019, 33 (9-10) : 578 - 589
  • [29] Single molecule fret measurements of the RNA polymerase elongation complex
    Lamb, DC
    Coban, O
    Zaychikov, E
    Heumann, H
    Nienhaus, GU
    BIOPHYSICAL JOURNAL, 2003, 84 (02) : 359A - 359A
  • [30] Mechanistic model of the elongation complex of Escherichia coli RNA polymerase
    Korzheva, N
    Mustaev, A
    Nudler, E
    Nikiforov, V
    Goldfarb, A
    COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY, 1998, 63 : 337 - 345