Parallel interval Newton-like Schwarz methods for almost linear parabolic problems

被引:7
|
作者
Schwandt, Hartmut [1 ]
机构
[1] Tech Univ Berlin, Fak 2, Inst Math, D-10623 Berlin, Germany
关键词
almost linear parabolic problems; enclosure methods; nonlinear systems of equations; Newton-like methods; Schwarz alternating procedure; domain decomposition; parallel methods;
D O I
10.1016/j.cam.2005.07.042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We introduce parallel interval Newton-Schwarz-like methods for nonlinear systems of equations arising from discretizations of almost linear parabolic problems. By applying interval techniques, we get global convergence properties and verified enclosures. Parallelism is introduced by domain decomposition. Numerical results from a SGI Altix 3700 are included. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:437 / 444
页数:8
相关论文
共 50 条
  • [21] LOCAL CONVERGENCE OF DIFFERENCE NEWTON-LIKE METHODS
    YPMA, TJ
    MATHEMATICS OF COMPUTATION, 1983, 41 (164) : 527 - 536
  • [22] On the error estimates of several Newton-like methods
    Huang, ZD
    APPLIED MATHEMATICS AND COMPUTATION, 1999, 106 (01) : 1 - 16
  • [23] ON THE MONOTONE CONVERGENCE OF GENERAL NEWTON-LIKE METHODS
    ARGYROS, IK
    SZIDAROVSZKY, F
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1992, 45 (03) : 489 - 502
  • [24] Dynamics of Newton-like root finding methods
    B. Campos
    J. Canela
    P. Vindel
    Numerical Algorithms, 2023, 93 : 1453 - 1480
  • [25] Multiplicative Schwarz methods for parabolic problems
    Rui, Hongxing
    Applied Mathematics and Computation (New York), 2003, 136 (2-3): : 593 - 610
  • [26] Multiplicative Schwarz methods for parabolic problems
    Rui, HX
    APPLIED MATHEMATICS AND COMPUTATION, 2003, 136 (2-3) : 593 - 610
  • [27] Additive Schwarz methods for parabolic problems
    Yang, JH
    Yang, DP
    APPLIED MATHEMATICS AND COMPUTATION, 2005, 163 (01) : 17 - 28
  • [28] Newton-like methods for numerical optimization on manifolds
    Hüper, K
    Trumpf, J
    CONFERENCE RECORD OF THE THIRTY-EIGHTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS, VOLS 1 AND 2, 2004, : 136 - 139
  • [29] Dynamics of Newton-like root finding methods
    Campos, B.
    Canela, J.
    Vindel, P.
    NUMERICAL ALGORITHMS, 2023, 93 (04) : 1453 - 1480
  • [30] Improved convergence analysis for Newton-like methods
    Ángel Alberto Magreñán
    Ioannis K. Argyros
    Numerical Algorithms, 2016, 71 : 811 - 826