Size-temperature equivalence in tensile deformation of metallic glass

被引:4
|
作者
Meduri, Chandra Sekhar [1 ]
Blawzdziewicz, Jerzy [2 ]
Kumar, Golden [1 ]
机构
[1] Univ Texas Dallas, Dept Mech Engn, Richardson, TX 75080 USA
[2] Texas Tech Univ, Dept Mech Engn, Lubbock, TX 79409 USA
基金
美国国家科学基金会;
关键词
SHEAR-BAND FRACTURE; FICTIVE TEMPERATURE; PLASTIC-DEFORMATION; COMPRESSION; DUCTILITY; TRANSITION; STRENGTH; FLOW; INSTABILITY; MECHANISM;
D O I
10.1016/j.msea.2020.140595
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Tensile fracture of irradiation-free metallic glass specimens with diameters ranging from 100 nm to 500 mu m is investigated at different temperatures. A gradual change in fracture morphology from vein-pattern to completely smooth fracture surface to necking is observed with decreasing sample size and testing temperature. The size-temperature equivalence in the entire length scale can be described by considering the thermal effects in shear localization of metallic glasses. We construct an empirical model based on the shear band heating and velocity formulations to qualitatively describe the size and temperature effects on the fracture morphology. Our results suggest that the widely reported size-dependent transition from shear-localized to homogeneous flow in metallic glasses is fundamentally different from the high temperature homogeneous viscous flow. The plastic deformation in nanoscale samples is spatially localized in embryonic shear bands, which never mature to the propagation stage due to lack of heat content.
引用
收藏
页数:8
相关论文
共 50 条
  • [21] Size-effects in tensile fracture of rejuvenated and annealed metallic glass
    Jabed, Akib
    Kumar, Golden
    SCRIPTA MATERIALIA, 2024, 241
  • [22] A Tensile Deformation Model for In-situ Dendrite/Metallic Glass Matrix Composites
    J. W. Qiao
    T. Zhang
    F. Q. Yang
    P. K. Liaw
    S. Pauly
    B. S. Xu
    Scientific Reports, 3
  • [23] A Tensile Deformation Model for In-situ Dendrite/Metallic Glass Matrix Composites
    Qiao, J. W.
    Zhang, T.
    Yang, F. Q.
    Liaw, P. K.
    Pauly, S.
    Xu, B. S.
    SCIENTIFIC REPORTS, 2013, 3
  • [24] EXAFS study on atomic distribution change during tensile deformation of metallic glass
    Nasu, Toshio
    Usuki, Takeshi
    Onodera, Y.
    Sakurai, Masaki
    He, B.
    Zhong, W.
    Wei, Z.
    Wei, S.
    Zhang, W.
    Inoue, A.
    THERMEC 2006, PTS 1-5, 2007, 539-543 : 1955 - +
  • [25] Finite element analysis of tensile deformation of nanoglass-metallic glass laminate composites
    Hirmukhe, S. S.
    Prasad, K. E.
    Singh, I
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 161 : 83 - 92
  • [26] Improved Tensile Ductility by Severe Plastic Deformation for Nano-Structured Metallic Glass
    Dong, Yue
    Liu, Suya
    Biskupek, Johannes
    Cao, Qingping
    Wang, Xiaodong
    Jiang, Jian-Zhong
    Wunderlich, Rainer
    Fecht, Hans-Joerg
    MATERIALS, 2019, 12 (10)
  • [27] An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites
    X. H. Sun
    J. W. Qiao
    Z. M. Jiao
    Z. H. Wang
    H. J. Yang
    B. S. Xu
    Scientific Reports, 5
  • [28] An improved tensile deformation model for in-situ dendrite/metallic glass matrix composites
    Sun, X. H.
    Qiao, J. W.
    Jiao, Z. M.
    Wang, Z. H.
    Yang, H. J.
    Xu, B. S.
    SCIENTIFIC REPORTS, 2015, 5
  • [29] Atomic arrangement in CuZr-based metallic glass composites under tensile deformation
    Hao, Huali
    Zhou, Wenzhao
    Lu, Yang
    Lau, Denvid
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2020, 22 (01) : 313 - 324
  • [30] Bending and tensile deformation of metallic nanowires
    McDowell, Matthew T.
    Leach, Austin M.
    Gall, Ken
    MODELLING AND SIMULATION IN MATERIALS SCIENCE AND ENGINEERING, 2008, 16 (04)