Hybrid Design and Performance Tests of a Hovering Insect-inspired Flapping-wing Micro Aerial Vehicle

被引:42
|
作者
Quoc-Viet Nguyen [1 ]
Chan, Woei Leong [1 ]
Debiasi, Marco [1 ]
机构
[1] Natl Univ Singapore, Temasek Labs, Singapore 117411, Singapore
关键词
insect-inspired flapping wing; hovering; clap-and-fling; MAV; vertical takeoff; MECHANISMS; FLIGHT; AERODYNAMICS; STEADY; LIFT;
D O I
10.1016/S1672-6529(16)60297-4
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hovering ability is one of the most desired features in Flapping-Wing Micro Air Vehicles (FW-MAVs). This paper presents a hybrid design of flapping wing and fixed wing, which combines two flapping wings and two fixed wings to take advantage of the double wing clap-and-fling effect for high thrust production, and utilizes the fixed wings as the stabilizing surfaces for inherently stable hovering flight. Force measurement shows that the effect of wing clap-and-fling significantly enhances the cycle-averaged vertical thrust up to 44.82% at 12.4 Hz. The effect of ventral wing clap-and-fling due to presence of fixed wings produces about 11% increase of thrust-to-power ratio, and the insect-inspired FW-MAV can produce enough cycle-averaged vertical thrust of 14.76 g for lift-off at 10 Hz, and 24 g at maximum frequency of 12.4 Hz. Power measurement indicates that the power consumed for aerodynamic forces and wing inertia, and power loss due to gearbox friction and mechanism inertia was about 80% and 20% of the total input power, respectively. The proposed insect-inspired FW-MAV could endure three-minute flight, and demonstrate a good flight performance in terms of vertical take-off, hovering, and control with an onboard 3.7 V-70 mAh LiPo battery and control system.
引用
收藏
页码:235 / 248
页数:14
相关论文
共 50 条
  • [31] Effect of Wing Kinematics Modulation on Aerodynamic Force Generation in Hovering Insect-mimicking Flapping-wing Micro Air Vehicle
    Hoang Vu Phan
    Quang Tri Truong
    Thi Kim Loan Au
    Hoon Cheol Park
    Journal of Bionic Engineering, 2015, 12 : 539 - 554
  • [32] A biologically inspired, flapping-wing, hybrid aerial-aquatic microrobot
    Chen, Yufeng
    Wang, Hongqiang
    Helbling, E. Farrell
    Jafferis, Noah T.
    Zufferey, Raphael
    Ong, Aaron
    Ma, Kevin
    Gravish, Nicholas
    Chirarattananon, Pakpong
    Kovac, Mirko
    Wood, Robert J.
    SCIENCE ROBOTICS, 2017, 2 (11)
  • [33] Surrogate Modeling for Optimizing the Wing Design of a Hawk Moth Inspired Flapping-Wing Micro Air Vehicle
    Huang, Wei
    Quinn, Roger D.
    Schmidt, Bryan E.
    Moses, Kenneth C.
    BIOMIMETIC AND BIOHYBRID SYSTEMS, LIVING MACHINES 2022, 2022, 13548 : 267 - 278
  • [34] Yaw Torque Authority for a Flapping-Wing Micro-Aerial Vehicle
    Steinmeyer, Rebecca
    Hyun, Nak-seung P.
    Helbling, E. Farrell
    Wood, Robert J.
    2019 INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA), 2019, : 2481 - 2487
  • [35] Comparative dynamic flight stability of insect-inspired flapping-wing micro air vehicles in hover: Longitudinal and lateral motions
    Nguyen, Khanh
    Au, Loan Thi Kim
    Phan, Hoang-Vu
    Park, Hoon Cheol
    AEROSPACE SCIENCE AND TECHNOLOGY, 2021, 119
  • [36] Design and Implementation of Hovering Flapping Wing Micro Air Vehicle
    Li, Jiaxiang
    Wang, Chao
    Liu, Jin
    Xie, Peng
    Zhou, Chaoying
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2019, PART VI, 2019, 11745 : 226 - 233
  • [37] Space–time computational analysis of bio-inspired flapping-wing aerodynamics of a micro aerial vehicle
    Kenji Takizawa
    Nikolay Kostov
    Anthony Puntel
    Bradley Henicke
    Tayfun E. Tezduyar
    Computational Mechanics, 2012, 50 : 761 - 778
  • [38] Steering and Horizontal Motion Control in Insect-Inspired Flapping-Wing MAVs: The Tunable Impedance Approach
    Mahjoubi, Hosein
    Byl, Katie
    2012 AMERICAN CONTROL CONFERENCE (ACC), 2012, : 901 - 908
  • [39] Development of an autonomous flapping-wing aerial vehicle
    Wei He
    Haifeng Huang
    Yunan Chen
    Wenzhen Xie
    Fusen Feng
    Yemeng Kang
    Changyin Sun
    Science China Information Sciences, 2017, 60
  • [40] Untethered flight of an insect-sized flapping-wing microscale aerial vehicle
    Jafferis, Noah T.
    Helbling, E. Farrell
    Karpelson, Michael
    Wood, Robert J.
    NATURE, 2019, 570 (7762) : 491 - +