Solutions of Yang-Baxter equation in an endomorphism semigroup and quasi-(Co)braided almost bialgebras

被引:20
|
作者
Li, F [1 ]
机构
[1] Hangzhou Univ, Dept Math, Hangzhou 310028, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1080/00927870008826957
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The aim of this paper is to study the solutions of the Yang-Baxter equation in the endomorphism semigroup of the tensor product of a vector space. As preparation, we introduce the concepts of quasi-braided almost bialgebra (see also [10]) and quasi-cobraided almost bialgebra, and discuss some of their properties. In particular, it is shown that the quasi-R-matrix R of every quasi-braided almost weak Hopf algebra is regular under von Neumann's meaning. The solutions of the Yang-Baxter equation in the endomorphism semigroups are constructed respectively from every quasi-braided almost bialgebra and every quasi-cobraided almost bialgebra. As examples, we explain how to build solutions of the Yang-Baxter equation from some weak Hopf algebras and all Clifford monoids. Finally, the FRT construction is given so-as to build every solution of the Yang-Baxter equation from a quasi-cobraided bialgebra.
引用
收藏
页码:2253 / 2270
页数:18
相关论文
共 50 条
  • [21] Solutions of Yang-Baxter equation with color parameters
    孙晓东
    王世坤
    ScienceinChina,SerA., 1995, Ser.A.1995 (09) : 1105 - 1116
  • [22] Knitting ansatz and solutions of Yang-Baxter equation
    Zhang, J
    Yan, H
    FRONTIERS IN QUANTUM FIELD THEORY, PROCEEDINGS OF THE INTERNATIONAL WORKSHOP, 1998, : 253 - 258
  • [23] Distributive biracks and solutions of the Yang-Baxter equation
    Jedlicka, Premysl
    Pilitowska, Agata
    Zamojska-Dzienio, Anna
    INTERNATIONAL JOURNAL OF ALGEBRA AND COMPUTATION, 2020, 30 (03) : 667 - 683
  • [24] SOLUTIONS OF YANG-BAXTER EQUATION WITH COLOR PARAMETERS
    SUN, XD
    WANG, SK
    SCIENCE IN CHINA SERIES A-MATHEMATICS PHYSICS ASTRONOMY & TECHNOLOGICAL SCIENCES, 1995, 38 (09): : 1105 - 1116
  • [25] Spectral solutions of the Yang-Baxter matrix equation
    Ding, J.
    Rhee, N. H.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 402 (02) : 567 - 573
  • [26] Involutive latin solutions of the Yang-Baxter equation
    Bonatto, Marco
    Kinyon, Michael
    Stanovsky, David
    Vojtechovsky, Petr
    JOURNAL OF ALGEBRA, 2021, 565 : 128 - 159
  • [27] Trigonometric solutions of the associative Yang-Baxter equation
    Schedler, T
    MATHEMATICAL RESEARCH LETTERS, 2003, 10 (2-3) : 301 - 321
  • [28] COMMENT ON THE SOLUTIONS OF THE GRADED YANG-BAXTER EQUATION
    CHUNG, WS
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (05) : 2485 - 2489
  • [29] Commuting solutions of the Yang-Baxter matrix equation
    Ding, J.
    Zhang, C.
    Rhee, N. H.
    APPLIED MATHEMATICS LETTERS, 2015, 44 : 1 - 4
  • [30] Knitting ansatz and solutions to Yang-Baxter equation
    Yan, H
    Zhang, J
    JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (16): : L413 - L418