Discrimination between parkinsonian syndrome and essential tremor using artificial neural network classification of quantified DaTSCAN data

被引:15
|
作者
Hamilton, David
List, Adrian
Butler, Timothy
Hogg, Stephen
Cawley, Martin
机构
[1] Lincoln Cty Hosp, Dept Med Phys, Lincoln LN2 5QY, England
[2] Lincoln Cty Hosp, Dept Radiol, Lincoln LN2 5QY, England
关键词
DaTSCAN; quantification; artificial neural network; classification; essential tremor; parkinsonian syndromes;
D O I
10.1097/01.mnm.0000243369.80765.24
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background In the semi-quantitative assessment of DaTSCAN images, it has been suggested that the ratio of tracer accumulation in the putamen to that in the caudate nucleus may be helpful and could allow parkinsonian syndromes progression to be assessed. Separation of ratio values has been reported when early Parkinson's disease is compared with essential tremor. The separation is lost, however, when the Parkinson's disease is not early stage. Objectives To evaluate whether a two-stage analysis can differentiate between parkinsonian syndromes, of various stages, and essential tremor, and whether such a two-stage analysis can be undertaken in a single step using artificial neural networks (ANNs). Methods Data from 18 patients were analysed. Quantification was undertaken by manually drawing irregular regions of interest (ROIs): over each caudate nucleus and putamen and over an occipital cortex area near the posterior edge of the brain. A two-stage analysis was undertaken and was repeated, in a single step, using an ANN. Results The first stage, of the two-stage analysis, identified 12 patients with non-early parkinsonian syndromes. The remaining six patients were then successfully classified into early parkinsonian syndromes and essential tremor. The ANN analysis successfully discriminated parkinsonian syndromes from essential tremor, in all patients, in a single step. Conclusions The two-stage process provides a method for classifying early disease without being compromised by the noise from non-early disease. The results of the single stage ANN analysis were very definite and it may be considered to have potential in the quantification of DaTSCAN images for clinical use.
引用
收藏
页码:939 / 944
页数:6
相关论文
共 50 条
  • [31] Epilepsy classification using optimized artificial neural network
    Saini, Jagriti
    Dutta, Maitreyee
    NEUROLOGICAL RESEARCH, 2018, 40 (11) : 982 - 994
  • [32] Classification of Stress Recognition using Artificial Neural Network
    Alic, Berina
    Sejdinovic, Dijana
    Gurbeta, Lejla
    Badnjevic, Almir
    2016 5TH MEDITERRANEAN CONFERENCE ON EMBEDDED COMPUTING (MECO), 2016, : 297 - 300
  • [33] Classification of respiratory sounds by using an artificial neural network
    Dokur, Z
    Ölmez, T
    INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2003, 17 (04) : 567 - 580
  • [34] Classification of psychiatric disorders using artificial neural network
    Bashyal, S
    ADVANCES IN NEURAL NETWORKS - ISNN 2005, PT 3, PROCEEDINGS, 2005, 3498 : 796 - 800
  • [35] Classification of catchments for nitrogen using Artificial Neural Network Pattern Recognition and spatial data
    O'Sullivan, Cherie M.
    Ghahramani, Afshin
    Deo, Ravinesh C.
    Pembleton, Keith
    Khan, Urooj
    Tuteja, Narendra
    Science of the Total Environment, 2022, 809
  • [36] Classification of heart sounds using an artificial neural network
    Ölmez, T
    Dokur, Z
    PATTERN RECOGNITION LETTERS, 2003, 24 (1-3) : 617 - 629
  • [37] Image Classification of Canaries Using Artificial Neural Network
    Yanuki, Bagus
    Rahman, Aviv Yuniar
    Istiadi
    2021 5TH INTERNATIONAL CONFERENCE ON INFORMATICS AND COMPUTATIONAL SCIENCES (ICICOS 2021), 2021,
  • [38] Ripeness Classification of Bananas Using an Artificial Neural Network
    Fatma M. A. Mazen
    Ahmed A. Nashat
    Arabian Journal for Science and Engineering, 2019, 44 : 6901 - 6910
  • [39] AUTOMATED DEFECT CLASSIFICATION USING AN ARTIFICIAL NEURAL NETWORK
    Chady, T.
    Caryk, M.
    Piekarczyk, B.
    REVIEW OF PROGRESS IN QUANTITATIVE NONDESTRUCTIVE EVALUATION, VOLS 28A AND 28B, 2009, 1096 : 1591 - 1598
  • [40] Automatic text classification using an artificial neural network
    de Mello, RF
    Senger, LJ
    Yang, LT
    HIGH PERFORMANCE COMPUTATIONAL SCIENCE AND ENGINEERING, 2004, 172 : 215 - +