Stochastic coalescence multi-fragmentation processes

被引:0
|
作者
Cepeda, Eduardo [1 ]
机构
[1] Univ Paris Est 61, Lab Analyse & Math Appl, UMR 8050, Ave Gen Gaulle, F-94010 Creteil, France
关键词
Stochastic coalescence multi-fragmentation process; Stochastic interacting particle systems; PARTICLE-SYSTEMS; COAGULATION; EQUATION;
D O I
10.1016/j.spa.2015.09.004
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study infinite systems of particles which undergo coalescence and fragmentation, in a manner determined solely by their masses. A pair of particles having masses x and y coalesces at a given rate K(x, y). A particle of mass x fragments into a collection of particles of masses theta(1)x, theta(2)x,... at rate F(x)beta(d theta). We assume that the kernels K and F satisfy Holder regularity conditions with indices lambda is an element of (0, 1] and alpha is an element of [0, infinity) respectively. We show existence of such infinite particle systems as strong Markov processes taking values in l(lambda), the set of ordered sequences (m(i))(i >= 1) such that Sigma(i >= 1) m(i)(lambda) < infinity. We show that these processes possess the Feller property. This work relies on the use of a Wasserstein-type distance, which has proved to be particularly well-adapted to coalescence phenomena. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:360 / 391
页数:32
相关论文
共 50 条
  • [41] Fragmentation models based on void coalescence
    Curran, DR
    Seaman, L
    Tokheim, RE
    SHOCK COMPRESSION OF CONDENSED MATTER-1999, PTS 1 AND 2, 2000, 505 : 305 - 308
  • [42] Author Correction: Evidence for multi-fragmentation and mass shedding of boulders on rubble-pile binary asteroid system (65803) Didymos
    M. Pajola
    F. Tusberti
    A. Lucchetti
    O. Barnouin
    S. Cambioni
    C. M. Ernst
    E. Dotto
    R. T. Daly
    G. Poggiali
    M. Hirabayashi
    R. Nakano
    E. Mazzotta Epifani
    N. L. Chabot
    V. Della Corte
    A. Rivkin
    H. Agrusa
    Y. Zhang
    L. Penasa
    R.-L. Ballouz
    S. Ivanovski
    N. Murdoch
    A. Rossi
    C. Robin
    S. Ieva
    J. B. Vincent
    F. Ferrari
    S. D. Raducan
    A. Campo-Bagatin
    L. Parro
    P. Benavidez
    G. Tancredi
    Ö. Karatekin
    J. M. Trigo-Rodriguez
    J. Sunshine
    T. Farnham
    E. Asphaug
    J. D. P. Deshapriya
    P. H. A. Hasselmann
    J. Beccarelli
    S. R. Schwartz
    P. Abell
    P. Michel
    A. Cheng
    J. R. Brucato
    A. Zinzi
    M. Amoroso
    S. Pirrotta
    G. Impresario
    I. Bertini
    A. Capannolo
    Nature Communications, 15 (1)
  • [43] Convergence properties of a stochastic model for coagulation-fragmentation processes with diffusion
    Guias, F
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2001, 19 (02) : 245 - 278
  • [44] STOCHASTIC COAGULATION-FRAGMENTATION PROCESSES WITH A FINITE NUMBER OF PARTICLES AND APPLICATIONS
    Hoze, Nathanael
    Holcman, David
    ANNALS OF APPLIED PROBABILITY, 2018, 28 (03): : 1449 - 1490
  • [45] Coalescence processes in emulsions
    Danner, T
    Schubert, H
    FOOD COLLOIDS: FUNDAMENTALS OF FORMULATION, 2001, (258): : 116 - 124
  • [46] Coalescence and breakage processes
    Walker, C
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (09) : 729 - 748
  • [47] Coalescence in Branching Processes
    Athreya, Krishna B.
    BRANCHING PROCESSES AND THEIR APPLICATIONS, 2016, 219 : 3 - 22
  • [48] Stochastic ballistic annihilation and coalescence
    Blythe, RA
    Evans, MR
    Kafri, Y
    PHYSICAL REVIEW LETTERS, 2000, 85 (18) : 3750 - 3753
  • [49] STOCHASTIC COALESCENCE IN LOGARITHMIC TIME
    Loh, Po-Shen
    Lubetzky, Eyal
    ANNALS OF APPLIED PROBABILITY, 2013, 23 (02): : 492 - 528
  • [50] Two-parameter Poisson-Dirichlet measures and reversible exchangeable fragmentation-coalescence processes
    Bertoin, Jean
    COMBINATORICS PROBABILITY & COMPUTING, 2008, 17 (03): : 329 - 337