On the parallelezation of domain decomposition methods for 3-D boundary value problems

被引:0
|
作者
Babin, VN [1 ]
Il'in, VP [1 ]
Pylkin, AS [1 ]
机构
[1] Russian Acad Sci, Inst Computat Math & Math Geophys, Siberian Div, Novosibirsk 630090, Russia
来源
关键词
parallel implementation; multiprocessor; speedup; domain decomposition method; boundary value problem;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
An investigation of parallel domain decomposition methods for interactive solution of 3D boundary value problem is presented. The various variants of algorithms are considered: the different values of subdomain overlapping, the different numbers of subdomains and processors, accelerated and non-accelerated two-level iterations. The dependence of speedup on the computational parameters is discussed on the base of numerical experiment at the multiprocessor computer Fujitsu-Siemense RM600.
引用
收藏
页码:385 / 390
页数:6
相关论文
共 50 条
  • [21] STOCHASTIC BOUNDARY ELEMENT METHODS FOR 3-D PROBLEMS WITH CENTRIFUGAL FORCES AND RELIABILITY ANALYSIS
    Wen Weidong
    Sun Xiaoling (Nanjing University of Aeronautics and Astronautics
    Chinese Journal of Aeronautics, 1996, (02) : 98 - 103
  • [22] A Spurious-Free Domain Decomposition Method for 3-D Maxwell's Eigenvalue Problems
    Wang, Shi Jie
    Liu, Jie
    Chen, Ke
    Liu, Qing Huo
    IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, 2023, 71 (02) : 548 - 560
  • [23] Frequency Domain Decomposition of 3-D Eddy Current Problems in Steel Laminations of Induction Machines
    Handgruber, Paul
    Stermecki, Andrej
    Biro, Oszkar
    Ofner, Georg
    IEEE TRANSACTIONS ON MAGNETICS, 2014, 50 (02) : 901 - 904
  • [24] Domain decomposition methods for 3D crack propagation problems using XFEM
    Bakalakos, Serafeim
    Georgioudakis, Manolis
    Papadrakakis, Manolis
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2022, 402
  • [25] Time domain coupling of the boundary and discrete element methods for 3D problems
    Barros, Guilherme
    Pereira, Andre
    Rojek, Jerzy
    Carter, John
    Thoeni, Klaus
    COMPUTATIONAL MECHANICS, 2024, 74 (04) : 779 - 797
  • [26] Explicit preconditioned domain decomposition schemes for solving nonlinear boundary value problems
    Gravvanis, GA
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2003, 45 (1-3) : 263 - 272
  • [27] Defect correction and domain decomposition for second-order boundary value problems
    Chibi, AS
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2001, 130 (1-2) : 41 - 51
  • [28] Domain Decomposition for 3-D Nonlinear Magnetostatic Problems: Newton-Krylov-Schur Versus Schur-Newton-Krylov Methods
    Ghenai, Mohamed I.
    Perrussel, Ronan
    Chadebec, Olivier
    Vi, Frederic
    Guichon, Jean-Michel
    Meunier, Gerard
    Siau, Jonathan
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (03) : 1 - 4
  • [29] DOMAIN DECOMPOSITION METHODS FOR SOLVING STOKES-DARCY PROBLEMS WITH BOUNDARY INTEGRALS
    Boubendir, Yassine
    Tlupova, Svetlana
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2013, 35 (01): : B82 - B106
  • [30] A nonoverlapping domain decomposition method for exterior 3-D problem
    Yu, DH
    Wu, JM
    JOURNAL OF COMPUTATIONAL MATHEMATICS, 2001, 19 (01) : 77 - 86