Latent space models for network perception data

被引:3
|
作者
Sewell, Daniel K. [1 ]
机构
[1] Univ Iowa, Dept Biostat, Iowa City, IA 52242 USA
关键词
cognitive social structures; latent space network model; network estimation; social network analysis; visualization; COGNITIVE-SOCIAL STRUCTURES; INFORMANT ACCURACY; POLITICAL LANDSCAPE; PREDICTORS; COMMUNICATION; CONCORDANCE; FRIENDS; HEALTH; BIASES;
D O I
10.1017/nws.2019.1
中图分类号
O1 [数学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 0701 ; 070101 ;
摘要
Social networks, wherein the edges represent nonbehavioral relations such as friendship, power, and influence, can be difficult to measure and model. A powerful tool to address this is cognitive social structures (Krackhardt, D. (1987). Cognitive social structures. Social Networks, 9(2), 109-134.), where the perception of the entire network is elicited from each actor. We provide a formal statistical framework to analyze informants' perceptions of the network, implementing a latent space network model that can estimate, e.g., homophilic effects while accounting for informant error. Our model allows researchers to better understand why respondents' perceptions differ. We also describe how to construct a meaningful single aggregated network that ameliorates potential respondent error. The proposed method provides a visualization method, an estimate of the informants' biases and variances, and we describe a method for sidestepping forced-choice designs.
引用
收藏
页码:160 / 179
页数:20
相关论文
共 50 条
  • [21] Comparing the latent space of generative models
    Andrea Asperti
    Valerio Tonelli
    [J]. Neural Computing and Applications, 2023, 35 : 3155 - 3172
  • [22] Comparing the latent space of generative models
    Asperti, Andrea
    Tonelli, Valerio
    [J]. NEURAL COMPUTING & APPLICATIONS, 2023, 35 (04): : 3155 - 3172
  • [23] Properties of latent variable network models
    Rastelli, Riccardo
    Friel, Nial
    Raftery, Adrian E.
    [J]. NETWORK SCIENCE, 2016, 4 (04) : 407 - 432
  • [24] LEARNABILITY OF LATENT POSITION NETWORK MODELS
    Choi, David S.
    Wolfe, Patrick J.
    [J]. 2011 IEEE STATISTICAL SIGNAL PROCESSING WORKSHOP (SSP), 2011, : 521 - 524
  • [25] Network models for haptic perception
    Millar, S
    [J]. INFANT BEHAVIOR & DEVELOPMENT, 2005, 28 (03): : 250 - 265
  • [26] Latent Space Model for Process Data
    Chen, Yi
    Zhang, Jingru
    Yang, Yi
    Lee, Young-Sun
    [J]. JOURNAL OF EDUCATIONAL MEASUREMENT, 2022, 59 (04) : 517 - 535
  • [27] Latent space model for rank data
    Gormley, Isobel Claire
    Murphy, Thomas Brendan
    [J]. STATISTICAL NETWORK ANALYSIS: MODELS, ISSUES, AND NEW DIRECTIONS, 2007, 4503 : 90 - +
  • [28] Latent Space Modeling of Hypergraph Data
    Turnbull, Kathryn
    Lunagomez, Simon
    Nemeth, Christopher
    Airoldi, Edoardo
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2023,
  • [29] Learning Latent Space Models with Angular Constraints
    Xie, Pengtao
    Deng, Yuntian
    Zhou, Yi
    Kumar, Abhimanu
    Yu, Yaoliang
    Zou, James
    Xing, Eric P.
    [J]. INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 70, 2017, 70
  • [30] Constructing visual models with a latent space approach
    Monay, Florent
    Quelhas, Pedro
    Gatica-Perez, Daniel
    Odobez, Jean-Marc
    [J]. SUBSPACE, LATENT STRUCTURE AND FEATURE SELECTION, 2006, 3940 : 115 - 126