Optimal error estimates of explicit finite difference schemes for the coupled Gross-Pitaevskii equations

被引:1
|
作者
Liao, Feng [1 ]
Zhang, Luming [1 ]
机构
[1] Nanjing Univ Aeronaut & Astronaut, Coll Sci, Nanjing 211106, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Coupled Gross-Pitaevskii equations; Bose-Einstein condensation; rotating Lagrangian coordinate; induction argument method; convergence; NONLINEAR SCHRODINGER-EQUATIONS; BOSE-EINSTEIN CONDENSATE; NUMERICAL-SOLUTION; DYNAMICS; STATES; VORTICES; SYSTEM;
D O I
10.1080/00207160.2017.1343942
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we investigate the convergence of explicit finite difference schemes which contain a Richardson scheme and a leap-frog scheme for computing the coupled Gross-Pitaevskii equations in high space dimensions. We establish the optimal error estimates of our schemes at the order of O(t 2 + h2) in the l8-norm with the time step t and the mesh size h. Besides the standard techniques of the energy analysis method, the key techniques in the analysis is to use the method of induction argument and order reduction. The numerical results are reported to confirm our theoretical analysis for the numerical methods.
引用
收藏
页码:1874 / 1892
页数:19
相关论文
共 50 条
  • [31] An efficient and conservative compact finite difference scheme for the coupled Gross-Pitaevskii equations describing spin-1 Bose-Einstein condensate
    Wang, Tingchun
    Jiang, Jiaping
    Wang, Hanquan
    Xu, Weiwei
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 323 : 164 - 181
  • [32] An efficient time-splitting compact finite difference method for Gross-Pitaevskii equation
    Wang, Hanquan
    Ma, Xiu
    Lu, Junliang
    Gao, Wen
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 297 : 131 - 144
  • [33] Dissipation of Gross-Pitaevskii Turbulence Coupled with Thermal Excitations
    Michikazu Kobayashi
    Makoto Tsubota
    Journal of Low Temperature Physics, 2007, 148 : 275 - 279
  • [34] ON THE CONVERSE PROBLEM FOR THE GROSS-PITAEVSKII EQUATIONS WITH A LARGE PARAMETER
    Dancer, E. Norman
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2014, 34 (06) : 2481 - 2493
  • [35] Peregrine Soliton Management of Breathers in Two Coupled Gross-Pitaevskii Equations with External Potential
    Chaachoua Sameut, H.
    Pattu, Sakthivinayagam
    Al Khawaja, U.
    Benarous, M.
    Belkroukra, H.
    PHYSICS OF WAVE PHENOMENA, 2020, 28 (03) : 305 - 312
  • [36] Dissipation of Gross-Pitaevskii turbulence coupled with thermal excitations
    Kobayashi, Michikazu
    Tsubota, Makoto
    JOURNAL OF LOW TEMPERATURE PHYSICS, 2007, 148 (3-4) : 275 - 279
  • [37] A Fast Time Splitting Finite Difference Approach to Gross?Pitaevskii Equations
    Caliari, Marco
    Zuccher, Simone
    COMMUNICATIONS IN COMPUTATIONAL PHYSICS, 2021, 29 (05) : 1336 - 1364
  • [38] A unifying computational framework for fractional Gross-Pitaevskii equations
    Veeresha, P.
    Baleanu, Dumitru
    PHYSICA SCRIPTA, 2021, 96 (12)
  • [39] BLOW-UP SOLUTIONS FOR TWO COUPLED GROSS-PITAEVSKII EQUATIONS WITH ATTRACTIVE INTERACTIONS
    Guo, Yujin
    Zeng, Xiaoyu
    Zhou, Huan-Song
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2017, 37 (07) : 3749 - 3786
  • [40] Equipartition of Mass in Nonlinear Schrodinger/Gross-Pitaevskii Equations
    Gang, Zhou
    Weinstein, Michael I.
    APPLIED MATHEMATICS RESEARCH EXPRESS, 2011, (02) : 123 - 181