Ion cyclotron resonance heating for tungsten control in various JET H-mode scenarios

被引:33
|
作者
Goniche, M. [1 ,19 ]
Dumont, R. J. [1 ]
Bobkov, V. [2 ,73 ]
Buratti, P. [3 ,12 ]
Brezinsek, S. [4 ,50 ]
Challis, C. [5 ]
Colas, L. [1 ,19 ]
Czarnecka, A. [6 ,60 ]
Drewelow, P. [2 ,74 ]
Fedorczak, N. [1 ,19 ]
Garcia, J. [1 ,19 ]
Giroud, C. [5 ,18 ]
Graham, M. [5 ]
Graves, J. P. [7 ,44 ]
Hobirk, J. [2 ,73 ]
Jacquet, P. [5 ,18 ]
Lerche, E. [8 ,69 ]
Mantica, P. [9 ,56 ]
Monakhov, I. [5 ,18 ]
Monier-Garbet, P. [1 ]
Nave, M. F. F. [10 ,64 ]
Noble, C. [5 ,18 ]
Nunes, I. [10 ,64 ]
Puetterich, T. [2 ]
Rimini, F. [5 ]
Sertoli, M. [2 ,73 ]
Valisa, M. [11 ,23 ]
Van Eester, D. [8 ,69 ]
Abduallev, S. [50 ]
Abhangi, M. [57 ]
Abreu, P. [64 ]
Afzal, M. [18 ]
Aggarwal, K. M. [40 ]
Ahlgren, T. [112 ]
Ahn, J. H. [19 ]
Aho-Mantila, L. [122 ]
Aiba, N. [80 ]
Airila, M. [122 ]
Albanese, R. [115 ]
Aldred, V. [18 ]
Alegre, D. [104 ]
Alessi, E. [56 ]
Aleynikov, P. [66 ]
Alfier, A. [23 ]
Alkseev, A. [83 ]
Allinson, M. [18 ]
Alper, B. [18 ]
Alves, E. [64 ]
Ambrosino, G. [115 ]
Ambrosino, R. [116 ]
机构
[1] CEA, IRFM, F-13108 St Paul Les Durance, France
[2] Max Planck Inst Plasma Phys, Boltzmannstr 2, D-85748 Garching, Germany
[3] ENEA, CR Frascati, Via E Fermi 45, I-00044 Frascati, RM, Italy
[4] Forschungszentrum Julich, Trilateral Euregio Cluster, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
[5] CCFE, Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[6] IPPLM, Hery 23, PL-01497 Warsaw, Poland
[7] Ecole Polytech Fed Lausanne, Ctr Rech Phys Plasmas, CH-1015 Lausanne, Switzerland
[8] 1LPP ERM KMS, Trilateral Euregio Cluster, Brussels, Belgium
[9] CNR, Ist Fis Plasma P Caldirola, Milan, Italy
[10] Univ Lisbon, IST, Inst Plasmas & Fusao Nucl, Lisbon, Portugal
[11] CNR, Consorzio RFX, Padua, Italy
[12] Aalto Univ, POB 14100, FIN-00076 Aalto, Finland
[13] Aix Marseille Univ, CNRS, Ctr Marseille, M2P2 UMR 7340, F-13451 Marseille, France
[14] Aix Marseille Univ, CNRS, IUSTI UMR 7343, F-13013 Marseille, France
[15] Aix Marseille Univ, CNRS, PIIM, UMR 7345, F-13013 Marseille, France
[16] Arizona State Univ, Tempe, AZ USA
[17] Barcelona Supercomp Ctr, Barcelona, Spain
[18] CCFE Culham Sci Ctr, Abingdon OX14 3DB, Oxon, England
[19] CEA, IRFM, F-13108 St Paul Les Durance, France
[20] Univ Calif San Diego, Ctr Energy Res, La Jolla, CA 92093 USA
[21] Ctr Brasileiro Pesquisas Fis, Rua Xavier Sigaud 160, BR-22290180 Rio De Janeiro, Brazil
[22] Consorzio CREATE, Via Claudio 21, I-80125 Naples, Italy
[23] Consorzio RFX, Corso Stati Uniti 4, I-35127 Padua, Italy
[24] Daegu Univ, Gyongsan 712174, Gyeongbuk, South Korea
[25] Univ Carlos III Madrid, Dept Fis, Madrid 28911, Spain
[26] Univ Ghent, Dept Appl Phys UG, St Pietersnieuwstr 41, B-9000 Ghent, Belgium
[27] Chalmers Univ Technol, Dept Earth & Space Sci, SE-41296 Gothenburg, Sweden
[28] Univ Cagliari, Dept Elect & Elect Engn, Piazza Armi 09123, Cagliari, Italy
[29] Comenius Univ, Dept Expt Phys, Fac Math Phys & Informat, Mlynska Dolina F2, Bratislava 84248, Slovakia
[30] Warsaw Univ Technol, Dept Mat Sci, PL-01152 Warsaw, Poland
[31] Korea Adv Inst Sci & Technol, Dept Nucl & Quantum Engn, Daejeon 34141, South Korea
[32] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 ONG, Lanark, Scotland
[33] Uppsala Univ, Dept Phys & Astron, SE-75120 Uppsala, Sweden
[34] Chalmers Univ Technol, Dept Phys, S-41296 Gothenburg, Sweden
[35] Imperial Coll London, Dept Phys, London SW7 2AZ, England
[36] KTH, SCI, Dept Phys, SE-10691 Stockholm, Sweden
[37] Univ Basel, Dept Phys, Basel, Switzerland
[38] Univ Oxford, Dept Phys, Oxford OX1 2JD, England
[39] Univ Warwick, Dept Phys, Coventry CV4 7AL, W Midlands, England
[40] Queens Univ, Dept Pure & Appl Phys, Belfast BT7 1NN, Antrim, North Ireland
[41] Univ Catania, Dipartimento Ingn Elettr Elettron & Informat, I-95125 Catania, Italy
[42] Univ Trento, Dipartimento Ingn Ind, Trento, Italy
[43] Dublin City Univ, Dublin, Ireland
[44] Swiss Plasma Ctr, EPFL, CH-1015 Lausanne, Switzerland
[45] EUROfus Programme Management Unit, Boltzmannstr 2, D-85748 Garching, Germany
[46] Culham Sci Ctr, EUROfus Programme Management Unit, Culham OX14 3DB, England
[47] European Commiss, B-1049 Brussels, Belgium
[48] ULB, Fluid & Plasma Dynam, Campus Plaine CP 231 Blvd Triomphe, B-1050 Brussels, Belgium
[49] FOM Inst DIFFER, Eindhoven, Netherlands
[50] Forschungszentrum Julich GmbH, Inst Energie & Klimaforsch Plasmaphys, D-52425 Julich, Germany
关键词
ICRH; impurity transport; tungsten; neo-classical transport; ICRH; OPERATION;
D O I
10.1088/1361-6587/aa60d2
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Ion cyclotron resonance heating (ICRH) in the hydrogen minority scheme provides central ion heating and acts favorably on the core tungsten transport. Full wave modeling shows that, at medium power level (4MW), after collisional redistribution, the ratio of power transferred to the ions and the electrons vary little with the minority (hydrogen) concentration n(H)/n(e) but the high-Z impurity screening provided by the fast ions temperature increases with the concentration. The power radiated by tungsten in the core of the JET discharges has been analyzed on a large database covering the 2013-2014 campaign. In the baseline scenario with moderate plasma current (I-p. =. 2.5 MA) ICRH modifies efficiently tungsten transport to avoid its accumulation in the plasma centre and, when the ICRH power is increased, the tungsten radiation peaking evolves as predicted by the neo-classical theory. At higher current (3-4MA), tungsten accumulation can be only avoided with 5MW of ICRH power with high gas injection rate. For discharges in the hybrid scenario, the strong initial peaking of the density leads to strong tungsten accumulation. When this initial density peaking is slightly reduced, with an ICRH power in excess of 4 MW, very low tungsten concentration in the core (similar to 10(-5)) is maintained for 3 s. MHD activity plays a key role in tungsten transport and modulation of the tungsten radiation during a sawtooth cycle is correlated to the fishbone activity triggered by the fast ion pressure gradient.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Modification of argon impurity transport by electron cyclotron heating in KSTAR H-mode plasmas
    Hong, Joohwan
    Henderson, S. S.
    Kim, Kimin
    Seon, C. R.
    Song, Inwoo
    Lee, H. Y.
    Jang, Juhyeok
    Park, Jae Sun
    Lee, S. G.
    Lee, J. H.
    Lee, Seung Hun
    Hong, Suk-Ho
    Choe, Wonho
    NUCLEAR FUSION, 2017, 57 (03)
  • [22] An alternative method to mimic mode conversion for ion cyclotron resonance heating
    Zhang, J. H.
    Zhang, X. J.
    Qin, C. M.
    Zhang, W.
    Yang, Y. Q.
    NUCLEAR FUSION, 2024, 64 (01)
  • [23] Excitation of the geodesic acoustic mode during ion cyclotron resonance heating
    Marchenko, V. S.
    PHYSICS OF PLASMAS, 2006, 13 (06)
  • [24] Integrated Modelling of Nitrogen Seeded JET ILW Discharges for H-mode and Hybrid Scenarios
    Ivanova-Stanik, I.
    Zagorski, R.
    Telesca, G.
    Czarnecka, A.
    Challis, C.
    Hobirk, J.
    CONTRIBUTIONS TO PLASMA PHYSICS, 2014, 54 (4-6) : 442 - 447
  • [25] HIGH-CONCENTRATION MINORITY ION-CYCLOTRON RESONANCE HEATING IN JET
    BHATNAGAR, VP
    JACQUINOT, J
    START, DFH
    TUBBING, BJD
    NUCLEAR FUSION, 1993, 33 (01) : 83 - 99
  • [26] D-T fusion with ion cyclotron resonance heating in the JET tokamak
    Start, DFH
    Jacquinot, J
    Bergeaud, V
    Bhatnagar, VP
    Cottrell, GA
    Clement, S
    Eriksson, LG
    Fasoli, A
    Gondhalekar, A
    Gormezano, C
    Grosshoeg, G
    Guenther, K
    Harbour, P
    Horton, LD
    Howman, A
    Jackel, H
    Jarvis, ON
    Lawson, KD
    Lowry, C
    Mantsinen, M
    Marcus, FB
    Monk, R
    Righi, E
    Rimini, FG
    Sadler, GJ
    Saibene, GR
    Sartori, R
    Schunke, B
    Sharapov, S
    Sips, ACC
    Stamp, M
    van Belle, P
    PHYSICAL REVIEW LETTERS, 1998, 80 (21) : 4681 - 4684
  • [27] Tungsten transport in JET H-mode plasmas in hybrid scenario, experimental observations and modelling
    Angioni, C.
    Mantica, P.
    Puetterich, T.
    Valisa, M.
    Baruzzo, M.
    Belli, E. A.
    Belo, P.
    Casson, F. J.
    Challis, C.
    Drewelow, P.
    Giroud, C.
    Hawkes, N.
    Hender, T. C.
    Hobirk, J.
    Koskela, T.
    Taroni, L. Lauro
    Maggi, C. F.
    Mlynar, J.
    Odstrcil, T.
    Reinke, M. L.
    Romanelli, M.
    NUCLEAR FUSION, 2014, 54 (08)
  • [28] Sawtooth control in ITER using ion cyclotron resonance heating
    Chapman, I. T.
    Graves, J. P.
    Johnson, T.
    Asunta, O.
    Bonoli, P.
    Choi, M.
    Jaeger, E. F.
    Jucker, M.
    Sauter, O.
    PLASMA PHYSICS AND CONTROLLED FUSION, 2011, 53 (12)
  • [29] Neutron emission spectroscopy results for internal transport barrier and mode conversion ion cyclotron resonance heating experiments at JET
    Giacomelli, L.
    Hjalmarsson, A.
    Kallne, J.
    Hellesen, C.
    Tardocchi, M.
    Gorini, G.
    Van Eester, D.
    Lerche, E.
    Johnson, T.
    Kiptily, V.
    Conroy, S.
    Sunden, E. Andersson
    Ericsson, G.
    Johnson, M. Gatu
    Sjostrand, H.
    Weiszflog, M.
    REVIEW OF SCIENTIFIC INSTRUMENTS, 2008, 79 (10):
  • [30] OBSERVATION OF H-MODE CONFINEMENT IN THE DIII-D TOKAMAK WITH ELECTRON-CYCLOTRON HEATING
    LOHR, J
    STALLARD, BW
    PRATER, R
    SNIDER, RT
    BURRELL, KH
    GROEBNER, RJ
    HILL, DN
    MATSUDA, K
    MOELLER, CP
    PETRIE, TW
    STJOHN, H
    TAYLOR, TS
    PHYSICAL REVIEW LETTERS, 1988, 60 (25) : 2630 - 2633