Low-complexity versatile finite field multiplier in normal basis

被引:2
|
作者
Li, H [1 ]
Zhang, CN
机构
[1] Univ Lethbridge, Dept Math & Comp Sci, Lethbridge, AB T1K 3M4, Canada
[2] Univ Regina, Dept Comp Sci, TRLabs, Regina, SK S4S 0A2, Canada
关键词
finite field multiplication; Massey-Omura multiplier; normal basis; VLSI; encryption;
D O I
10.1155/S111086570220414X
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A low-complexity VLSI array of versatile multiplier in normal basis over GF(2(n)) is presented. The finite field parameters can be changed according to the user's requirement and make the multiplier reusable in different applications. It increases the flexibility to use the same multiplier for different applications and reduces the user's cost. The proposed multiplier has a regular structure and is very suitable for high speed VLSI implementation. In addition, the pipeline versatile multiplier can be modified to a low-cost architecture which is feasible in embedded systems and restricted computing environments.
引用
收藏
页码:954 / 960
页数:7
相关论文
共 50 条
  • [21] A Low-Complexity High-Radix RNS Multiplier
    Kouretas, Ioannis
    Paliouras, Vassilis
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2009, 56 (11) : 2449 - 2462
  • [22] LSM: Novel Low-Complexity Unified Systolic Multiplier over Binary Extension Field
    Xie, Jiafeng
    Lee, Chiou-Yng
    GLSVLSI '19 - PROCEEDINGS OF THE 2019 ON GREAT LAKES SYMPOSIUM ON VLSI, 2019, : 343 - 346
  • [23] Efficient VLSI Implementation of a Finite Field Multiplier Using Reordered Normal Basis
    Leboeuf, Karl
    Namin, Ashkan Hosseinzadeh
    Wu, Huapeng
    Muscedere, Roberto
    Ahmadi, Majid
    53RD IEEE INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, 2010, : 1218 - 1221
  • [24] Low-Complexity Semi-Systolic Multiplier Using Redundant Representation Over Finite Fields
    Kim, Kee-Won
    Lee, Hyun-Ho
    Kim, Seung-Hoon
    ADVANCED SCIENCE LETTERS, 2017, 23 (10) : 10325 - 10328
  • [25] Low-Complexity Multiplier Architectures for Single and Hybrid-Double Multiplications in Gaussian Normal Bases
    Azarderakhsh, Reza
    Reyhani-Masoleh, Arash
    IEEE TRANSACTIONS ON COMPUTERS, 2013, 62 (04) : 744 - 757
  • [26] Low-complexity systolic multiplier over GF(2m) using weakly dual basis
    Lee, CY
    Lu, YC
    Lu, EH
    APCCAS 2002: ASIA-PACIFIC CONFERENCE ON CIRCUITS AND SYSTEMS, VOL 1, PROCEEDINGS, 2002, : 367 - 372
  • [27] Low-Complexity Intra Coding in Versatile Video Coding
    Choi, Kiho
    The Van Le
    Choi, Yongho
    Lee, Jin Young
    IEEE TRANSACTIONS ON CONSUMER ELECTRONICS, 2022, 68 (02) : 119 - 126
  • [28] Low-Complexity transform algorithm for Versatile Video Coding
    Abdallah, Bouthaina
    Belghith, Fatma
    Masmoud, Nouri
    2019 IEEE INTERNATIONAL CONFERENCE ON DESIGN & TEST OF INTEGRATED MICRO & NANO-SYSTEMS (DTS), 2019,
  • [29] Low-Complexity Multiternary Digit Multiplier Design in CNTFET Technology
    Srinivasu, B.
    Sridharan, K.
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2016, 63 (08) : 753 - 757
  • [30] Efficient multiplier over finite field represented in type II optimal normal basis
    Wang, Youbo
    Tlan, Zhiguang
    Bi, Xinyan
    Niu, Zhendong
    ISDA 2006: SIXTH INTERNATIONAL CONFERENCE ON INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, VOL 1, 2006, : 1132 - 1135